본 논문에서는 분포형 강우-유출 모형인 GRM(Grid based Rainfall-runoff Model)(최윤석, 김경탁, 2017)을 이용해서 낙동강 유역을 대상으로 대유역 홍수해석시스템을 구축하고, 유출해석을 위한 실행시간을 평가하였다. 유출모형은 낙동강의 주요 지류와 본류를 소유역으로 구분하여 모형을 구축하고, 각 소유역의 유출해석 결과를 실시간으로 연계할 수 있도록 하여 낙동강 전체 유역의 유출모형을 구축하였다. 이와 같이 하나의 대유역을 다수의 소유역시스템으로 분할하여 모형을 구축할 경우, 유출해석시스템 구성이 복잡해지는 단점이 있으나, 소유역별로 각기 다른 자료를 이용하여 다양한 해상도로 유출해석을 할 수 있으므로, 소유역별 특성에 맞는 유출모형 구축이 가능한 장점이 있다. 또한 각 소유역시스템은 별도의 프로세스로 계산이 진행되므로, 대유역을 고해상도로 해석하는 경우에도 계산시간을 단축할 수 있다. 본 연구에서는 낙동강 유역을 20개(본류 구간 3개, 1차 지류 13개, 댐상류 4개)의 소유역으로 분할하여 계산 시간을 검토하였으며, 최종적으로 21개(본류 구간 3개, 1차 지류 13개, 댐상류 5개)의 소유역으로 분할하여 유출해석시스템을 구축하였다. 댐 상류 유역은 댐하류와 유량전달이 없이 독립적으로 모의되고, 댐과 연결된 하류 유역은 관측 방류량을 상류단 하천의 경계조건으로 적용한다. 지류 유역은 본류 구간과 연결되고, 지류의 계산 유량은 본류와의 연결지점에 유량조건으로 실시간으로 입력된다. 이때 본류와 지류의 유량 연계는 데이터베이스를 매개로 하였다. 유출해석시스템의 성능을 평가하기 위해서 Microsoft 클라우드 서비스인 Azure를 이용하였다. 낙동강 유역을 20개 소유역으로 구성한 경우에서의 유출해석시스템의 속도 평가 결과 Azure virtual machine instance DS15 v2(OS : Windows Server 2012 R2, CPU : 2.4 GHz Intel $Xeon^{(R)}$ E5-2673 v3 20 cores)에서 1.5분이 소요 되었다. 계산시간 평가시 GRM은 'IsParallel=false' 옵션을 적용하였으며, 모의 기간은 24시간을 기준으로 하였다. 연구결과 분포형 모형을 이용한 대유역 유출해석시스템 구축이 가능했으며, 계산시간도 충분히 단축할 수 있었다. 또한 추가적인 CPU와 병렬계산을 적용할 경우, 계산시간은 더 단축될 수 있으며, 이러한 기법들은 분포형 모형을 이용한 대유역 유출해석시스템 구축시 유용하게 활용될 수 있을 것으로 판단된다.
본 논문에서는 분포형 강우-유출 모형인 GRM(Grid based Rainfall-runoff Model)(최윤석, 김경탁, 2017)을 이용해서 낙동강 유역을 대상으로 대유역 홍수해석시스템을 구축하고, 유출해석을 위한 실행시간을 평가하였다. 유출모형은 낙동강의 주요 지류와 본류를 소유역으로 구분하여 모형을 구축하고, 각 소유역의 유출해석 결과를 실시간으로 연계할 수 있도록 하여 낙동강 전체 유역의 유출모형을 구축하였다. 이와 같이 하나의 대유역을 다수의 소유역시스템으로 분할하여 모형을 구축할 경우, 유출해석시스템 구성이 복잡해지는 단점이 있으나, 소유역별로 각기 다른 자료를 이용하여 다양한 해상도로 유출해석을 할 수 있으므로, 소유역별 특성에 맞는 유출모형 구축이 가능한 장점이 있다. 또한 각 소유역시스템은 별도의 프로세스로 계산이 진행되므로, 대유역을 고해상도로 해석하는 경우에도 계산시간을 단축할 수 있다. 본 연구에서는 낙동강 유역을 20개(본류 구간 3개, 1차 지류 13개, 댐상류 4개)의 소유역으로 분할하여 계산 시간을 검토하였으며, 최종적으로 21개(본류 구간 3개, 1차 지류 13개, 댐상류 5개)의 소유역으로 분할하여 유출해석시스템을 구축하였다. 댐 상류 유역은 댐하류와 유량전달이 없이 독립적으로 모의되고, 댐과 연결된 하류 유역은 관측 방류량을 상류단 하천의 경계조건으로 적용한다. 지류 유역은 본류 구간과 연결되고, 지류의 계산 유량은 본류와의 연결지점에 유량조건으로 실시간으로 입력된다. 이때 본류와 지류의 유량 연계는 데이터베이스를 매개로 하였다. 유출해석시스템의 성능을 평가하기 위해서 Microsoft 클라우드 서비스인 Azure를 이용하였다. 낙동강 유역을 20개 소유역으로 구성한 경우에서의 유출해석시스템의 속도 평가 결과 Azure virtual machine instance DS15 v2(OS : Windows Server 2012 R2, CPU : 2.4 GHz Intel $Xeon^{(R)}$ E5-2673 v3 20 cores)에서 1.5분이 소요 되었다. 계산시간 평가시 GRM은 'IsParallel=false' 옵션을 적용하였으며, 모의 기간은 24시간을 기준으로 하였다. 연구결과 분포형 모형을 이용한 대유역 유출해석시스템 구축이 가능했으며, 계산시간도 충분히 단축할 수 있었다. 또한 추가적인 CPU와 병렬계산을 적용할 경우, 계산시간은 더 단축될 수 있으며, 이러한 기법들은 분포형 모형을 이용한 대유역 유출해석시스템 구축시 유용하게 활용될 수 있을 것으로 판단된다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.