$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 2D 렌더링 정보를 활용한 손-객체의 3D 복원
Hand-Object 3D Reconstruction Based on 2D Rendering 원문보기

한국방송∙미디어공학회 2021년도 하계학술대회, 2021 June 23, 2021년, pp.327 - 330  

남현길 (한양대학교) ,  박종일 (한양대학교)

초록
AI-Helper 아이콘AI-Helper

본 논문은 RGB 영상 데이터셋의 일부만을 지도학습하여(Sparsely-supervised learning) Annotation 되지 않은 영상에 대해 손-객체의 3D 포즈를 복원하기 위한 방법을 제안한다. 기존의 연구에서는 손-객체의 포즈에 해당하는 6DoF 만을 학습 데이터로 활용한다. 이와 달리, 본 논문에서는 정확도 향상을 위해 복원된 결과를 동일한 입력 영상 내에서 비교 가능하도록 3D 모델로 복원한 결과를 입력 영상의 마스크로 만들어 학습에 반영하였다. 구체적으로 추정된 포즈로 만들어낸 마스크를 입력 영상에 적용한 결과와 Ground-truth 포즈를 적용한 영상을 학습 시에 손실 함수에 반영하였다. 비교 실험을 통해 제안된 방법이 해당 방법을 적용하지 않은 경우 보다 3D 매쉬 오차가 적었음을 확인할 수 있었다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로