AI 기술의 성장과 함께 지식 그래프의 크기는 지속적으로 확장되고 있다. 지식 그래프는 주로 트리플이 연결된 RDF로 표현되며, 많은 RDF 저장소들이 RDF 데이터를 압축된 형태의 ID로 변환한다. 그러나 RDF 데이터의 크기가 특정 기준 이상으로 클 경우, 테이블 탐색으로 인한 높은 처리 시간과 메모리 오버헤드가 발생한다. 본 논문에서는 해시 ID 매핑 테이블 기반 RDF 변환을 분산 병렬 프레임워크인 맵리듀스에서 처리하는 방법을 제안한다. 제안한 방법은 RDF 데이터를 정수 기반 ID로 압축 변환하면서, 처리 시간을 단축하고 메모리 오버헤드를 개선한다. 본 논문의 실험 결과, 약 23GB의 LUBM 데이터에 제시한 방법을 적용했을 때, 크기는 약 3.8배 가량 줄어들었으며 약 106초의 변환 시간이 소모되었다.
AI 기술의 성장과 함께 지식 그래프의 크기는 지속적으로 확장되고 있다. 지식 그래프는 주로 트리플이 연결된 RDF로 표현되며, 많은 RDF 저장소들이 RDF 데이터를 압축된 형태의 ID로 변환한다. 그러나 RDF 데이터의 크기가 특정 기준 이상으로 클 경우, 테이블 탐색으로 인한 높은 처리 시간과 메모리 오버헤드가 발생한다. 본 논문에서는 해시 ID 매핑 테이블 기반 RDF 변환을 분산 병렬 프레임워크인 맵리듀스에서 처리하는 방법을 제안한다. 제안한 방법은 RDF 데이터를 정수 기반 ID로 압축 변환하면서, 처리 시간을 단축하고 메모리 오버헤드를 개선한다. 본 논문의 실험 결과, 약 23GB의 LUBM 데이터에 제시한 방법을 적용했을 때, 크기는 약 3.8배 가량 줄어들었으며 약 106초의 변환 시간이 소모되었다.
With the growth of AI technology, the scale of Knowledge Graphs continues to be expanded. Knowledge Graphs are mainly expressed as RDF representations that consist of connected triples. Many RDF storages compress and transform RDF triples into the condensed IDs. However, if we try to transform a lar...
With the growth of AI technology, the scale of Knowledge Graphs continues to be expanded. Knowledge Graphs are mainly expressed as RDF representations that consist of connected triples. Many RDF storages compress and transform RDF triples into the condensed IDs. However, if we try to transform a large scale of RDF triples, it occurs the high processing time and memory overhead because it needs to search the large ID mapping table. In this paper, we propose the method of converting RDF triples using Hash-based ID mapping tables with MapReduce, which is the software framework with a parallel, distributed algorithm. Our proposed method not only transforms RDF triples into Integer-based IDs, but also improves the conversion speed and memory overhead. As a result of our experiment with the proposed method for LUBM, the size of the dataset is reduced by about 3.8 times and the conversion time was spent about 106 seconds.
With the growth of AI technology, the scale of Knowledge Graphs continues to be expanded. Knowledge Graphs are mainly expressed as RDF representations that consist of connected triples. Many RDF storages compress and transform RDF triples into the condensed IDs. However, if we try to transform a large scale of RDF triples, it occurs the high processing time and memory overhead because it needs to search the large ID mapping table. In this paper, we propose the method of converting RDF triples using Hash-based ID mapping tables with MapReduce, which is the software framework with a parallel, distributed algorithm. Our proposed method not only transforms RDF triples into Integer-based IDs, but also improves the conversion speed and memory overhead. As a result of our experiment with the proposed method for LUBM, the size of the dataset is reduced by about 3.8 times and the conversion time was spent about 106 seconds.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.