$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 부산광역시 온천천 유역의 RNN-LSTM 알고리즘을 이용한 DO농도 예측
Prediction of the DO concentration using the RNN-LSTM algorithm in Oncheoncheon basin, Busan, Republic of Korea 원문보기

한국수자원학회 2021년도 학술발표회, 2021 June 03, 2021년, pp.86 - 86  

임희성 (충남대학교 지역환경토목학과 수리환경 및 자원정보) ,  안현욱 (충남대학교 지역환경토목학과)

초록
AI-Helper 아이콘AI-Helper

온천천은 부산광역시 금정구, 동래구, 연제구를 흐르는 도심 하천으로 부산 시민들의 도심 속 산책길, 자전거 길 등으로 활용되는 도시하천이다. 그러나 온천천 양안의 동래 곡저 평야가 시가지화 되고 온천천 발원지인 금정산 주변에서 무허가 상수도를 사용하고 각종 쓰레기와 하수의 유입으로 인해 하천 전체가 하수관으로 변해왔다. 이에 따라 부산광역시는 온천천 정비 계획을 시행하여 하천 정비와 함께 자동측정망을 설치하여 하천의 DO (dissolved oxygen), 탁도, TDS농도 등 자료를 수집하고 있다. 그러나 자동측정망으로 쌓여가는 데이터를 활용하여 DO농도 예측은 거의 이뤄지지 않고 있다. DO는 하천의 수질 오염 정도를 판단하는 수질인자로 역사적으로 하천 연구의 주요 연구 대상이 되어 왔다. 본 연구에서는 일 자료 뿐만 아니라 시 자료를 기반으로 RNN-LSTM 알고리즘을 활용한 DO예측을 시도하였다. RNN-LSTM은 시계열 학습에 뛰어난 알고리즘으로 인공신경망의 발전된 형태인 순환신경망이다. 연구에 앞서 부산광역시 보건환경정보 공개시스템으로부터 받은 자료 중에서 교정, 보수 중, 비사용, 장비전원단절 등으로 인해 누락데이터를 2014년 1월 1일부터 2018년 12월 31일의 데이터 전수조사 후 이상데이터를 확인하여 선형 보간하여 데이터를 사용하였다. 연구에서는 Google에서 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하여 부산광역시 금정구 부곡동에 위치한 부곡교 관측소의 DO농도를 시간 또는 일 예측을 하였다. 일 예측 학습에는 2014년~ 2018년의 기상자료(기온, 상대습도, 풍속, 강수량), DO농도 자료를 사용하였고, 시 예측 학습에는 연속된 자료가 가장 많은 2015년 3월 ~ 12월까지의 데이터를 활용하여 연구를 진행하였다. 모형의 검증을 위해 결정계수(R square)를 이용하여 통계분석을 실시하였다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로