$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 베어링 진단을 위한 진동 신호 기반의 딥러닝 모델
A Vibration Signal-based Deep Learning Model for Bearing Diagnosis 원문보기

한국방송∙미디어공학회 2022년도 하계학술대회, 2022 June 20, 2022년, pp.1232 - 1235  

박수연 (성균관대학교) ,  김재광 (성균관대학교)

초록
AI-Helper 아이콘AI-Helper

최근 자동차, 철도차량 등 사용자가 있는 기계 시스템에서의 고장 발생 시 사용자의 안전과 관련된 사고로 이어질 수 있어 부품에 대한 모니터링 및 고장 여부 판단은 매우 중요하다. 이러한 부품 중에서 베어링은 회전체와 회전하지 않는 물체 사이에서 회전이 원활하게 이루어질 수 있도록 하는 부품인데, 베어링에 결함이 발생하게 될 경우, 기계 시스템이 정지하거나, 마찰 열에 의해 화재 등의 치명적인 위험이 발생한다. 본 논문에서는 Resnet과 오토인코더를 활용하여 진동 신호 기반의 베어링의 고장을 감지하고 분류할 수 있는 모델을 제안한다. 제안 방법은 raw data를 이미지로 변환하여 입력으로 사용하는데, 이러한 접근을 통해 수집된 데이터의 손실을 최소화하고 데이터가 가지는 정보를 최대한 분석에 활용할 수 있다. 제안 모델의 검증을 위하여 공개된 데이터셋으로 학습/검증 하였고, 제안 방법이 기존 방법과 비교하여 더 높은 F1 Score와 정확도를 보임을 확인하였다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로