$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 학습 데이터 용량 및 반복 학습 횟수에 따른 이미지 기반 GPT 문장생성 및 성능 분석
Analyze GPT sentence generation performance based on Image by training data capacity and number of iterations 원문보기

한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호, 2023 July 12, 2023년, pp.363 - 364  

이동희 (동서대학교 소프트웨어학과) ,  최봉준 (동서대학교 소프트웨어학과)

초록
AI-Helper 아이콘AI-Helper

현재 많은 사람이 GPT를 통해 다양한 활동 및 연구를 진행하고 있다. 사람들은 GPT를 통해 문장생성 시 문장에 대한 정확도를 중요하게 생각한다. 하지만 용도에 따라 GPT를 통해 생성하는 문장의 문체와 같은 표현방식이 다르다. 그래서 생성된 문장이 유의미한 문장이라는 것에 판단이 매우 주관적이기 때문에 수치적 평가가 어렵다. 본 논문에서는 자연어처리 모델이 생성한 문장의 유의미함을 판단하기 위해 각 모델을 학습하는 데이터 용량과 반복 학습의 횟수에 따른 결과물을 비교하였다. 본 연구에서는 Fine-Tuning을 통해 총 4개의 GPT 모델을 구축하였다. 각 모델로 생성 문장을 BLEU 평가지표를 통해 평가한 결과 본 연구에 BLEU 모델은 부적합하다는 결과를 도출하였다. 이를 해결하기 위해 본 연구에서는 생성된 모델을 평가하고자 설문지를 만들어 평가를 진행하였다. 그 결과 사람에게 긍정적인 평가를 받는 결과를 얻을 수 있었다.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로