$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] HVAC 시스템의 이상 탐지를 위한 Transformer 기반 딥러닝 기법
Transformer Based Deep Learning Techniques for HVAC System Anomaly Detection

한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호, 2024 Jan. 17, 2024년, pp.47 - 48  

박창준 (한국교통대학교 교통.에너지융합학과) ,  박준휘 (한국교통대학교 AI.로봇공학과) ,  김남중 (한국교통대학교 소프트웨어학과) ,  이재현 (한국교통대학교 컴퓨터공학과) ,  곽정환 (한국교통대학교 소프트웨어학과)

초록
AI-Helper 아이콘AI-Helper

Heating, Ventilating, and Air Conditioning(HVAC) 시스템은 난방(Heating), 환기(Ventilating), 공기조화(Air Conditioning)를 제공하는 공조시스템으로, 실내 환경의 온도, 습도 조절 및 지속적인 순환 및 여과를 통해 실내 공기 질을 개선한다. 이러한 HVAC 시스템에 이상이 생기는 경우 공기 여과율이 낮아지며, COVID-19와 같은 법정 감염병 예방에 취약해진다. 또한 장비의 과부하를 유발하여, 시스템의 효율성 저하 및 에너지 낭비를 불러올 수 있다. 따라서 본 논문에서는 HVAC 시스템의 이상 탐지 및 조기 조치를 위한 Transformer 기반 이상 탐지 기법의 적용을 제안한다. Transformer는 기존 시계열 데이터 처리를 위한 기법인 Recurrent Neural Network(RNN)기반 모델의 구조적 한계점을 극복함에 따라 Long Term Dependency 문제를 해결하고, 병렬처리를 통해 효율적인 Feature 추출이 가능하다. Transformer 모델이 HVAC 시스템의 이상 탐지에서 RNN 기반의 비교군 모델보다 약 1.31%의 향상을 보이며, Transformer 모델을 통한 HVAC의 이상 탐지에 효율적임을 확인하였다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로