$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 관계형 데이터 스트림에서 키워드 검색을 위한 질의 최적화
Query Optimization for Keyword Search on Relational Data Stream 원문보기

한국정보처리학회 2008년도 추계학술발표대회, 2008 Nov. 14, 2008년, pp.360 - 363  

황진호 (한양대학교 컴퓨터공학과) ,  김학수 (한양대학교 컴퓨터공학과) ,  김종진 (한양대학교 컴퓨터공학과) ,  이승미 (한?대학교 컴퓨터공학과 B21 AIS 사업팀) ,  손진헌 (한양대학교 컴퓨터공학과)

초록
AI-Helper 아이콘AI-Helper

최근 관계형 데이터 스트림에서 키워드 검색에 관한 연구가 진행되고 있다. 키워드 검색을 통해 사용자는 시스템의 복잡한 내부 데이터 스키마나 질의언어에 대한 지식이 없이도 데이터 스트림에서 정보 검색이 가능하다. 하지만, 빈번하고 동적으로 변화하는 특성을 지닌 데이터 스트림에서 수행되는 연속 질의 처리를 위해서 보다 효과적인 질의 최적화 방안이 요구된다. 따라서, 우리는 본 논문을 통해 계층적 클러스터링을 이용하여 중간결과 공유의 최대화를 통한 질의 최적화를 방안을 제안한다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로