IPC분류정보
국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
US-0533601
(1983-09-19)
|
발명자
/ 주소 |
- Failla William G. (1 Rutgers Ct. Belleville NJ 07109)
|
인용정보 |
피인용 횟수 :
28 인용 특허 :
1 |
초록
▼
There is disclosed a coupling device, which can be connected or disconnected quickly, capable of operation in both high and low pressure environments, and in applications where shock and extreme vibration may be present. Interconnection is accomplished via complimentarily-threaded male and female me
There is disclosed a coupling device, which can be connected or disconnected quickly, capable of operation in both high and low pressure environments, and in applications where shock and extreme vibration may be present. Interconnection is accomplished via complimentarily-threaded male and female members. These members each contain an inner and outer valve assembly, arranged in such a manner that the inner valves open prior to the opening of the outer valves, thus permitting equalization of pressure (termed “venting”) to develop between the male and female sides of the coupling before fluid flow is initiated. Ease of manufacture is facilitated through modularized valving and spring biased structure, while the device\s symmetrical design allows for complete reversability of inputs and outputs. The instant coupling is intended for use with hydraulic and/or other types of fluid flow lines, particularly where said lines may be under pressure.
대표청구항
▼
An anti-vibration, high and low pressure, quick-disconnect, safety coupling, comprising: (a) an elongate male element having a longitudinal axial bore comprising first and second regions, said regions each separated by an orifice, said male element further comprising a third annular region surroundi
An anti-vibration, high and low pressure, quick-disconnect, safety coupling, comprising: (a) an elongate male element having a longitudinal axial bore comprising first and second regions, said regions each separated by an orifice, said male element further comprising a third annular region surrounding said second region, the outer circumference of said third annular region defining a circumferential housing of said elongate male element, the interior circumference of said third region comprising longitudinal locking means; (b) an elongate female element having a longitudinal bore including first, second and third regions, each separated respectively by an orifice in which the external surface of a mating end of said female element comprises a longitudinal locking means with relationship to the locking means of the interior of the circumferential housing of said third annular region of said male element, said longitudinal locking means comprising means for securing said male and female elements into a plurality of respective axial positions, one of said axial positions defining a first locking mode between the locking means of said male and female elements, said first locking mode occurring prior to axial contact between any other elements of said male and female elements; (c) a pair of inner-sealing valves having axial stems biased in a normally closed position, disposed upon a common axis of the respective male and female elements, said elements and said inner valves acting to define a second locking mode upon the axial advancement of said longitudinal locking means to a point of axial communication between the respective stems of said inner-sealing valves to the point of overcoming the normal closure bias of said inner valves to thereby open said inner valves, such open condition corresponding to said second locking mode; and (d) a pair of outer sealing valves biased in a normally closed position, disposed axially within the respective orifices of each male and female element, axially opposite the regions of axial communication between said male and female elements respectively, said outer valves acting to enable fluid flow through said orifices after said inner valves have been opened and advanced past and second locking mode, thereby defining a third locking mode ultimately characterized by fluid flow through the entire axial length of said male and female elements, in which said third locking mode will occur only after both pairs of normally-closed, inwardly-biased outer valves have become actuated into an open condition, in which that outer valve exposed to the greater external fluid pressure will open only after the opening of the opposite outer valve, such later opening caused by the eventual overcoming of the normal inward pulling bias of said outer axial valve, this caused by the axial advance of the male and female elements toward each other, into said third locking mode, whereby fluid flow toward said opposite valve through the entire coupling will occur in the direction of greatest fluid pressure.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.