$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Passive drag control of airfoils at transonic speeds

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) B64C-021/08   
미국특허분류(USC) 244/204 ; 244/208 ; 244/130
출원번호 US-0489056 (1983-04-27)
발명자 / 주소
출원인 / 주소
인용정보 피인용 횟수 : 23  인용 특허 : 1
초록

An airfoil for transonic speeds includes a porous top surface extending from a location about 50 to 60% of the chord length from a leading edge of the airfoil to a location about 80 to 90% of the chord length from the leading edge. A cavity is defined under the porous surface in the airfoil which has a depth of from 0.05 to 0.2% of the chord length. The porosity of the porous surface is chosen to be from 1 to 3% of the total airfoil surface and may be variable. The presence of the porous surface and cavity decrease airfoil drag at transonic speeds by pro...

대표
청구항

An airfoil for transonic speeds having a leading edge and comprising a porous top surface area extending from a location at about 50 to 60% of a chord length from the leading edge, to a location at about 80 to 90% of the chord length from the leading edge, and passive means defining a cavity under said porous top surface area and in the airfoil having a depth of from 0.05 to 0.2% the chord length. A passive method of reducing drag of an airfoil at transonic speeds comprising providing a porous surface area on the airfoil extending as close as 50% of a ch...

이 특허를 인용한 특허 피인용횟수: 23

  1. Rolston Stephen C.,GBX ; Ashford Edward M.,GB5. Aerodynamic low drag structure. USP1998045743488.
  2. Bunker Ronald Scott ; Abuaf Nesim. Airfoil with reduced heat load. USP2001026183197.
  3. Lorenzo Battisti IT. Boundary layer control of aerodynamic airfoils. USP2002126488238.
  4. Banks Daniel W. ; Wood Richard M. ; Bauer Steven X. S.. Control and augmentation of passive porosity through transpiration control. USP1999055901929.
  5. Thombi Layukallo JP. Control of flow separation and related phenomena on aerodynamic surfaces. USP2002116484971.
  6. Sakurai, Seiya; Fevergeon, Matthew D.. Door assembly for laminar flow control system. USP2012088245976.
  7. Billman, Garrett M.; O'Neil, Patrick J.. Forebody vortex alleviation device. USP2003096612524.
  8. Isotani, Kazuhide; Hayama, Kenji. High-lift device of flight vehicle. USP2017049623956.
  9. Isotani, Kazuhide; Hayama, Kenji. High-lift device of flight vehicle. USP2017039586672.
  10. Loth Eric. Mesoflap passive transpiration system and method for shock/boundary layer interaction control. USP1999105971327.
  11. Hassan,Ahmed A.; Billman,Garry. Method and apparatus for controlling a vehicle. USP2006026994297.
  12. Sakurai, Seiya; Fevergeon, Matthew D.. Method of laminar flow control using a door assembly. USP2013078484894.
  13. Shatz Solomon. Method of making a perforated metal sheet. USP2001036202304.
  14. Shatz Solomon (P.O. Box 523 Cupertino CA 94015). Movable sheet for laminar flow and deicing. USP1997015590854.
  15. Atassi, Oliver V.. Nacelle with porous surfaces. USP2015038974177.
  16. Booher, Sr., Benjamin V.. Parasitic drag induced boundary layer reduction system and method. USP2017079701399.
  17. O'Neil Patrick J. ; Billman Garrett M.. Passive porosity airfoil management device. USP2000066079671.
  18. Stallings ; Jr. Robert L. (Yorktown VA) Wilcox ; Jr. Floyd J. (Hampton VA). Passive venting technique for shallow cavities. USP1991055018688.
  19. Patel, Mehul P.; DiCocco, Jack M; Prince, Troy. Reconfigurable porous technology for fluid flow control and method of controlling flow. USP2005036866233.
  20. Chan, Andre S.; Hendriks, Ferdinand; Takemori, Keiichi. System and apparatus for mass-balanced spoiler in disk storage devices. USP2011128077430.
  21. Pitt, Dale M.. System and method for varying the porosity of an aerodynamic surface. USP2012088251317.
  22. Fedorov Alexander V.,RUX ; Malmuth Norman D.. Use of absorbing walls for laminar flow control. USP1999035884871.
  23. Nagel, Alexander; Bauminger, Shlomo. Wing and devices therefor. USP2015069061752.