This electrically driven children's vehicle has a vehicle body 1 provided with front wheels 2, rear wheels 3, and a motor 8 for driving the rear wheels 3. The vehicle body 8 has a clutch lever 7 attached thereto, which clutch lever 7 is used to turn on and off the transmission of torque from the mot
This electrically driven children's vehicle has a vehicle body 1 provided with front wheels 2, rear wheels 3, and a motor 8 for driving the rear wheels 3. The vehicle body 8 has a clutch lever 7 attached thereto, which clutch lever 7 is used to turn on and off the transmission of torque from the motor 8 to the rear wheels 3. A forward travel pedal 14 and a backward travel pedal 15 for rotating the rear wheels in the forward and backward direction, respectively, are mounted on the vehicle body 1 at a position where they can be operated by the foot, and these pedals are positioned relative to each other so that the forward travel pedal is disposed forwardly of the backward travel pedal. Further, the vehicle body 1 is provided with a motor drive circuit 20 adapted to rotate the motor 8 in the forward or backward direction when the forward travel pedal 14 or backward travel pedal 15 is pressed and to stop the rotation of the motor 8 when both the forward and backward travel pedals 14 and 15 are pressed at the same time.
대표청구항▼
1. An electrically driven children's vehicle comprising: a vehicle body having front wheels, rear wheels, a steering wheel for steering said front wheels, and a seat formed on top of said vehicle body, an electric motor mounted in said vehicle body for rotatively driving said front or rear wheels, s
1. An electrically driven children's vehicle comprising: a vehicle body having front wheels, rear wheels, a steering wheel for steering said front wheels, and a seat formed on top of said vehicle body, an electric motor mounted in said vehicle body for rotatively driving said front or rear wheels, said electric motor having respective power input terminals, a clutch lever attached to said vehicle body for turning on and off the transmission of torque from said motor to the front or rear wheels, a forward travel pedal means operable for rotating said front or rear wheels in the forward direction, a backward travel pedal means operable for rotating said front or rear wheels in the backward direction, said forward and backward travel pedal means being attached to the vehicle body and positioned relative to each other so that a forward travel pedal is located forwardly of a backward pedal at a place where said pedals can be operated by a foot, and a motor drive circuit including circuit switch means responsive to said forward and backward pedal means so that when said forward or backward travel pedal means is depressed, said motor rotates forwardly or backwardly, respectively, and so that said motor is stopped when the two pedals are simultaneously depressed, said circuit switch means comprising forward and backward travel changeover switches having common terminals connected to said electric power terminals of said electric motor, said changeover switches having normally closed contact means connected together, and normally open contact means also connected together, an electric power source connected between said normally closed contact means and said normally open contact means of said two changeover switches, and means operatively arranged between said forward and backward travel pedal means and the respective one of said contact means for keeping said normally closed contact means closed when said forward or backward travel pedal is not depressed, and for changing one of said contact means from a normally closed state to the normally open state when one of said pedals is depressed for supplying power to said electric motor from said electric power source. 2. The electrically driven children's vehicle of claim 1, wherein said vehicle body has right and left sides, said vehicle body having a stepping board on each of said sides, said stepping boards serving as footrests, and wherein said forward and backward travel pedals are attached to at least one of said stepping boards. 3. The electrically driven children's vehicle of claim 1, further comprising a clutch mechanism connected between said front and rear wheels driven by said motor, said clutch mechanism being operable by said clutch lever for engaging and disengaging said wheels from said drive motor. 4. The electrically driven children's vehicle of claim 1, wherein each of said forward and backward travel pedals is provided with a cam (14a, 15a) arranged for operating the respective contact means of the respective forward and backward travel changeover switch when one of said pedals is depressed.
Heinzmann, John David; Stevens, Jon M.; Debruin, Raymond; Foale, Anthony; Hoell, Jr., Joseph; Hussey, Patrick A.; Muller, Alexander, Apparatus and methods for control of a vehicle.
Heinzmann, John David; Stevens, Jon M.; Debruin, Raymond; Foale, Anthony; Hoell, Jr., Joseph; Hussey, Patrick A.; Muller, Alexander, Apparatus and methods for control of a vehicle.
Gerald P. Sitarski ; Daniel Dignitti ; Steven Robert Drosendahl ; Walter C. Miazga ; Douglas A. Knight, Children's ride-on vehicle with mechanical speed control.
Kamen Dean L. ; Ambrogi Robert R. ; Duggan Robert J. ; Heinzmann Richard K. ; Key Brian R. ; Dastous Susan D., Control loop for transportation vehicles.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen, Dean; Ambrogi, Robert R.; Dattolo, James J.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; McCambridge, Matthew M.; Morrell, John B.; Piedmonte, Michael D.; Rosasco, Richard J., Control of a personal transporter based on user position.
Kamen,Dean; Ambrogi,Robert R.; Dattolo,James J.; Duggan,Robert J.; Field,J. Douglas; Heinzmann,Richard Kurt; McCambridge,Matthew M.; Morrell,John B.; Piedmonte,Michael D.; Rosasco,Richard J., Control of a personal transporter based on user position.
Kamen, Dean L.; Ambrogi, Robert R.; Duggan, Robert J.; Field, J. Douglas; Heinzmann, Richard Kurt; Lambrechts, William; McCambridge, Matt; Perry, Christopher; Tellam, Mark E., Dynamic balancing vehicle with a seat.
Kamen, Dean L.; Amsbury, Burl; Field, J. Douglas; Langenfeld, Christopher C.; Morrell, John B.; Pompa, Jonathan B.; Stevens, Jon M.; Lund, Jeremy B., Guided control of a transporter.
Kamen Dean L. (Bedford NH) Ambrogi Robert R. (Manchester NH) Duggan Robert J. (Northwood NH) Heinzmann Richard K. (Francestown NH) Key Brian R. (Pelham NH) Skoskiewicz Andrzej (Manchester NH) Kristal, Human transporter.
Kamen, Dean; Morrell, John B.; Robinson, David W.; Reich, Ronald K.; Heinzmann, John David; LeMay, Philip; Meyer, Steven R.; Sachs, Jason M.; Field, J. Douglas, Method and system for fail-safe motor operation.
Kamen,Dean; Morrell,John B.; Robinson,David W.; Reich,Ronald K.; Heinzmann,John David; LeMay,Philip; Meyer,Steven R.; Sachs,Jason M.; Field,J. Douglas, Method and system for fail-safe motor operation.
Kamen, Dean; Ambrogi, Robert R.; Field, J. Douglas; Heinzmann, John David; Heinzmann, Richard Kurt; Langenfeld, Christopher C., Motion control of a transporter.
Dean L. Kamen ; Robert R. Ambrogi ; Robert J. Duggan ; J. Douglas Field ; Richard Kurt Heinzmann ; Burl Amsbury ; Christopher C. Langenfeld, Personal mobility vehicles and methods.
Kamen Dean L. ; Ambrogi Robert R. ; Duggan Robert J. ; Field J. Douglas ; Heinzmann Richard Kurt ; Amesbury Burl ; Langenfeld Christopher C., Personal mobility vehicles and methods.
Kamen Dean L. ; Ambrogi Robert R. ; Duggan Robert J. ; Heinzmann Richard Kurt ; Key Brian R. ; Skoskiewicz Andrzej ; Kristal Phyllis K., Transportation vehicles and methods.
Arling, Richard W.; Kelly, W. Patrick; LeMay, Philip; Morrell, John B.; Pompa, Jonathan B.; Robinson, David W., Yaw control for a personal transporter.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.