$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Superconducting films and devices exhibiting AC to DC conversion 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • H01L-039/22
  • H01L-021/203
출원번호 US-0558616 (1983-12-06)
발명자 / 주소
  • Keem John E. (Bloomfield Hills MI) Ovshinsky Stanford R. (Bloomfield Hills MI) Sadate-Akhavi Hossein (Bloomfield Hills MI) Chen Juei-Teng (Sterling Heights MI) Kadin Alan M. (Troy MI)
출원인 / 주소
  • Energy Conversion Devices, Inc. (Troy MI 02)
인용정보 피인용 횟수 : 158  인용 특허 : 17

초록

Superconducting films and devices are provided which exhibit an AC to DC conversion effect of an RF AC input signal. The films can be microscopically inhomogeneous with granular or columnar microstructures in layered or nonlayered structures, which provide the conversion effect with and without an a

대표청구항

A superconducting film comprising: a non-equilibrium structure providing local variations in superconducting transition temperature, said structure formed from at least two components, at least one of said components being a metallic material and at least one of said components being a non-metallic

이 특허에 인용된 특허 (17)

  1. McKaveney James P. (Claremont CA), Articles having an electrically conductive surface.
  2. Adam ; Erik, Composite monolithic low-loss superconductor for power transmission line.
  3. Dayem Aly H. (Colts Neck NJ) Geballe Theodore H. (Woodside CA) Patel Chandra K. N. (Summit NJ) Tien Ping K. (Chatham Township ; Morris County NJ), Epitaxial growth of superconductors such as Nb3Ge superconductors.
  4. Roth John A. (Oxnard CA) Roth Lynette B. (Oxnard CA), Improved superconductor/semiconductor junction structures.
  5. Mller Alfred (Erlangen DEX), Method for continuous production of niobium-germanium layers on a substrate.
  6. Harris ; Erik Preston ; Keyes ; Robert William, Method for fabricating ultra-narrow metallic lines.
  7. Cukauskas Edward J. (Vienna VA), Method for making Josephson junctions with contamination-free interfaces utilizing a ZnO contact insulator.
  8. Tsuya Noboru (Sendai JPX) Arai Kenichi (Sendai JPX), Method for manufacturing a thin and flexible ribbon of superconductor material.
  9. Dingle Raymond (Summit NJ) Gossard Arthur C. (Warren NJ) Petroff Pierre M. (Westfield NJ) Wiegmann William (Middlesex NJ), Method of fabricating periodic monolayer semiconductor structures by molecular beam epitaxy.
  10. Michikami Osamu (Tohkai JPX) Katoh Yujiro (Mito JPX) Tanabe Keiichi (Mito JPX) Takenaka Hisataka (Mito JPX) Yoshii Shizuka (Mito JPX), Method of fabrication of Josephson tunnel junction.
  11. de Lozanne Alejandro L. (Stanford CA), Microbridge superconducting device having support with stepped parallel surfaces.
  12. Iafrate Gerald J. (Toms River NJ) Aucoin Thomas A. (Ocean NJ) Ferry David K. (Ft. Collins CO), Multi-dimensional quantum well device.
  13. Bourgoin Ronald C. (18 Woodfern Cir. Greenville SC 29615), Process for forming ambient temperature superconducting filaments.
  14. Roth John A. (Oxnard CA) Roth Lynette B. (Oxnard CA), Process for forming improved superconductor/semiconductor junction structures.
  15. Latta Eberhard (Adliswil CHX) Gasser Marcel (Zurich CHX), Process for producing niobium Josephson junctions.
  16. Krevet Berthold (Dettenheim-Liedolsheim DEX) Schauer Wolfgang (Pfinztal DEX) Wchner Fritz (Germersheim DEX), Process for the preparation of superconducting compound materials.
  17. Hebard Arthur F. (Bernardsville NJ) Vandenberg Joanna M. (Summit NJ), Superconducting thin films.

이 특허를 인용한 특허 (158)

  1. Daley, Jon; Campbell, Kristy A.; Brooks, Joseph F., Access transistor for memory device.
  2. Daley, Jon; Campbell, Kristy A.; Brooks, Joseph F., Access transistor for memory device.
  3. Daley, Jon; Campbell, Kristy A.; Brooks, Joseph F., Access transistor for memory device.
  4. Li, Jiutao, Agglomeration elimination for metal sputter deposition of chalcogenides.
  5. Li, Jiutao, Agglomeration elimination for metal sputter deposition of chalcogenides.
  6. Li, Jiutao, Agglomeration elimination for metal sputter deposition of chalcogenides.
  7. Li, Jiutao, Agglomeration elimination for metal sputter deposition of chalcogenides.
  8. Moore, John, Apparatus and method for dual cell common electrode PCRAM memory device.
  9. Woerdenweber, Roger, Arrangement comprising a support and super-conductive film, vortex diode comprising said type of arrangement and use of vortex diodes for filters.
  10. Campbell,Kristy A., Assemblies displaying differential negative resistance.
  11. Campbell, Kristy A., Assemblies displaying differential negative resistance, semiconductor constructions, and methods of forming assemblies displaying differential negative resistance.
  12. Campbell, Kristy A.; Gilton, Terry L.; Moore, John T.; Brooks, Joseph F., Chalcogenide glass constant current device, and its method of fabrication and operation.
  13. Campbell,Kristy A., Chalcogenide-based electrokinetic memory element and method of forming the same.
  14. Li, Jiutao; McTeer, Allen; Herdt, Gregory; Doan, Trung T., Co-sputter deposition of metal-doped chalcogenides.
  15. Li,Jiutao; McTeer,Allen; Herdt,Gregory; Doan,Trung T., Co-sputter deposition of metal-doped chalcogenides.
  16. Li,Jiutao; McTeer,Allen; Herdt,Gregory; Doan,Trung T., Co-sputter deposition of metal-doped chalcogenides.
  17. Nejad,Hasan; Seyyedy,Mirmajid, Columnar 1T-N memory cell structure.
  18. Hush, Glen; Baker, Jake, Complementary bit PCRAM sense amplifier and method of operation.
  19. Hush,Glen; Baker,Jake, Complementary bit resistance memory sensor and method of operation.
  20. Campbell, Kristy A., Continuously variable resistor.
  21. Campbell, Kristy A., Differential negative resistance memory.
  22. Campbell,Kristy A., Differential negative resistance memory.
  23. Campbell,Kristy A., Differential negative resistance memory.
  24. Moore, John T.; Brooks, Joseph F., Electrode structure for use in an integrated circuit.
  25. Moore,John T.; Brooks,Joseph F., Electrode structure for use in an integrated circuit.
  26. Li, Jiutao; McTeer, Allen, Elimination of dendrite formation during metal/chalcogenide glass deposition.
  27. Li, Jiutao; McTeer, Allen, Elimination of dendrite formation during metal/chalcogenide glass deposition.
  28. Liu, Jun, Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication.
  29. Liu, Jun, Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication.
  30. Campbell,Kristy A.; Moore,John T.; Gilton,Terry L., Fabrication of single polarity programmable resistance structure.
  31. Li, Jiutao; Hampton, Keith; McTeer, Allen, Forming a memory device using sputtering to deposit silver-selenide film.
  32. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Graded GeSeconcentration in PCRAM.
  33. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Graded GexSe100-x concentration in PCRAM.
  34. Campbell, Kristy A.; Li, Jiutao; McTeer, Allen; Moore, John T., Layered resistance variable memory device and method of fabrication.
  35. Campbell, Kristy A.; Li, Jiutao; McTeer, Allen; Moore, John T., Layered resistance variable memory device and method of fabrication.
  36. Campbell,Kristy A.; Li,Jiutao; McTeer,Allen; Moore,John T., Layered resistance variable memory device and method of fabrication.
  37. Daley,Jon, Memory array for increased bit density.
  38. Daley, Jon, Memory array for increased bit density and method of forming the same.
  39. Moore, John T.; Campbell, Kristy A., Memory device and methods of controlling resistance variation and resistance profile drift.
  40. Campbell, Kristy A., Memory device incorporating a resistance variable chalcogenide element.
  41. Campbell,Kristy A., Memory device with switching glass layer.
  42. Moore,John T.; Gilton,Terry L., Memory device, programmable resistance memory cell and memory array.
  43. Moore,John T.; Campbell,Kristy A.; Gilton,Terry L., Memory element and its method of formation.
  44. Daley, Jon; Brooks, Joseph F., Memory elements having patterned electrodes and method of forming the same.
  45. Daley, Jon; Brooks, Joseph F., Memory elements having patterned electrodes and method of forming the same.
  46. Daley,Jon, Method and apparatus for accessing a memory array.
  47. Campbell,Kristy A., Method and apparatus for providing color changing thin film material.
  48. Casper, Stephen L.; Duesman, Kevin; Hush, Glen, Method and apparatus for sensing resistive memory state.
  49. Hush, Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  50. Hush, Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  51. Hush, Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  52. Hush, Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  53. Hush,Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  54. Li,Li; Li,Jiutao, Method for filling via with metal.
  55. Moore,John T.; Brooks,Joseph F., Method of fabricating an electrode structure for use in an integrated circuit.
  56. Campbell,Kristy A., Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element.
  57. Brooks,Joseph F., Method of forming a chalcogenide material containing device.
  58. Brooks,Joseph F., Method of forming a chalcogenide material containing device.
  59. Campbell,Kristy A.; Gilton,Terry L.; Moore,John T., Method of forming a memory cell.
  60. Campbell, Kristy A., Method of forming a memory device incorporating a resistance variable chalcogenide element.
  61. Campbell, Kristy A., Method of forming a memory device incorporating a resistance variable chalcogenide element.
  62. Campbell, Kristy A., Method of forming a memory device incorporating a resistance-variable chalcogenide element.
  63. Moore, John T.; Gilton, Terry L., Method of forming a non-volatile resistance variable device.
  64. Moore,John T.; Campbell,Kristy A.; Gilton,Terry L., Method of forming a resistance variable memory element.
  65. Campbell, Kristy A., Method of forming a variable resistance memory device comprising tin selenide.
  66. Gilton, Terry L., Method of forming and storing data in a multiple state memory cell.
  67. Campbell, Kristy A.; Gilton, Terry L.; Moore, John T.; Li, Jiutao, Method of forming chalcogenide comprising devices.
  68. Moore,John T.; Brooks,Joseph F., Method of forming electrode structure for use in an integrated circuit.
  69. Moore, John T., Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry.
  70. Campbell,Kristy A.; Moore,John T., Method of forming non-volatile resistance variable devices and method of forming a programmable memory cell of memory circuitry.
  71. Campbell,Kristy A.; Gilton,Terry L.; Moore,John T.; Li,Jiutao, Method of forming resistance variable devices.
  72. Harshfield,Steven T.; Wright,David Q., Method of making a memory cell.
  73. Moore, John T.; Campbell, Kristy A.; Gilton, Terry L., Method of manufacture of a PCRAM memory cell.
  74. Moore,John T.; Campbell,Kristy A.; Gilton,Terry L., Method of manufacture of a PCRAM memory cell.
  75. Moore,John T.; Campbell,Kristy A.; Gilton,Terry L., Method of manufacture of a resistance variable memory cell.
  76. Gilton,Terry L., Method of manufacture of programmable conductor memory.
  77. Gilton, Terry L., Method of manufacture of programmable switching circuits and memory cells employing a glass layer.
  78. Hush,Glen; Baker,Jake, Method of operating a complementary bit resistance memory sensor.
  79. Hush,Glen; Baker,Jake, Method of operating a complementary bit resistance memory sensor and method of operation.
  80. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Method of refreshing a PCRAM memory device.
  81. Moore,John T.; Gilton,Terry L.; Campbell,Kristy A., Method of refreshing a PCRAM memory device.
  82. Campbell, Kristy A.; Moore, John; Gilton, Terry L.; Brooks, Joseph F., Method to alter chalcogenide glass for improved switching characteristics.
  83. Moore, John T.; Campbell, Kristy A.; Gilton, Terry L., Method to control silver concentration in a resistance variable memory element.
  84. Campbell, Kristy A., Methods and apparatus for resistance variable material cells.
  85. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Methods for forming chalcogenide glass-based memory elements.
  86. Moore,John T.; Gilton,Terry L., Methods of forming a semiconductor memory device.
  87. Daley, Jon, Methods of forming memory arrays for increased bit density.
  88. Giltom, Terry L.; Campbell, Kristy A.; Moore, John T., Methods of forming non-volatile resistance variable devices and methods of forming silver selenide comprising structures.
  89. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Methods to form a memory cell with metal-rich metal chalcogenide.
  90. Moore,John T.; Gilton,Terry L.; Campbell,Kristy A., Methods to form a memory cell with metal-rich metal chalcogenide.
  91. Gilton, Terry L., Multiple data state memory cell.
  92. Gilton,Terry L., Multiple data state memory cell.
  93. Gilton,Terry L., Multiple data state memory cell.
  94. Gilton, Terry L., Non-volatile memory structure.
  95. Gilton, Terry L., Non-volatile memory structure.
  96. Gilton,Terry L., Non-volatile memory structure.
  97. Gilton,Terry L., Non-volatile memory structure.
  98. Moore, John T., Non-volatile resistance variable device.
  99. Campbell,Kristy A.; Moore,John T., Non-volatile resistance variable devices.
  100. Campbell,Kristy A.; Gilton,Terry L.; Moore,John T., Non-volatile zero field splitting resonance memory.
  101. Campbell, Kristy A., PCRAM device with switching glass layer.
  102. Campbell, Kristy A., PCRAM device with switching glass layer.
  103. Harshfield,Steven T.; Wright,David Q., PCRAM memory cell and method of making same.
  104. Moore, John; Baker, Jake, PCRAM rewrite prevention.
  105. Moore, John; Baker, R. Jacob, PCRAM rewrite prevention.
  106. Campbell, Kristy A., Phase change memory cell and method of formation.
  107. Campbell,Kristy A., Phase change memory cell and method of formation.
  108. Lee Seong-Jae,KRX ; Park Kyoung-Wan,KRX ; Shin Min-Cheol,KRX, Piezoresistive device and fabrication method thereof.
  109. Li,Li; Gilton,Terry L.; Ko,Kei Yu; Moore,John T.; Signorini,Karen, Plasma etching methods and methods of forming memory devices comprising a chalcogenide comprising layer received operably proximate conductive electrodes.
  110. Hardy, Trevor; Porter, Steve; Williford, Ethan; Ingram, Mark, Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory.
  111. Hardy,Trevor; Porter,Steve; Williford,Ethan; Ingram,Mark, Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory.
  112. Hardy,Trevor; Porter,Steve; Williford,Ethan; Ingram,Mark, Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory.
  113. Klein, Dean A., Power management control and controlling memory refresh operations.
  114. Klein, Dean A., Power management control and controlling memory refresh operations.
  115. Klein, Dean A., Power management control and controlling memory refresh operations.
  116. Daley, Jon, Process for erasing chalcogenide variable resistance memory bits.
  117. Daley,Jon, Process for erasing chalcogenide variable resistance memory bits.
  118. Gilton, Terry L., Programmable conductor memory cell structure.
  119. Gilton, Terry L., Programmable conductor memory cell structure and method therefor.
  120. Hush, Glen, Programmable conductor random access memory and a method for writing thereto.
  121. Casper, Stephen L.; Duesman, Kevin; Hush, Glen, Programmable conductor random access memory and method for sensing same.
  122. Moore,John T., Resistance variable device.
  123. Harshfield, Steven T.; Wright, David Q., Resistance variable memory cells.
  124. Campbell,Kristy A., Resistance variable memory device and method of fabrication.
  125. Campbell,Kristy A., Resistance variable memory device and method of fabrication.
  126. Campbell,Kristy A., Resistance variable memory device and method of fabrication.
  127. Campbell, Kristy A.; Daley, Jon; Brooks, Joseph F., Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication.
  128. Campbell,Kristy A.; Daley,Jon; Brooks,Joseph F., Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication.
  129. Campbell,Kristy A.; Daley,Jon; Brooks,Joseph F., Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication.
  130. Campbell, Kristy A.; Gilton, Terry L.; Moore, John T.; Li, Jiutao, Resistance variable memory devices with passivating material.
  131. Moore, John T.; Campbell, Kristy A.; Gilton, Terry L., Resistance variable memory element and its method of formation.
  132. Campbell,Kristy A.; Daley,Jon; Brooks,Joseph F., Resistance variable memory element with threshold device and method of forming the same.
  133. Campbell,Kristy A.; Daley,Jon; Brooks,Joseph F., Resistance variable memory element with threshold device and method of forming the same.
  134. Campbell,Kristy A., Resistance variable memory elements and methods of formation.
  135. Campbell,Kristy A., Resistance variable memory elements based on polarized silver-selenide network growth.
  136. Campbell, Kristy A., Resistance variable memory with temperature tolerant materials.
  137. Campbell, Kristy A., Resistance variable memory with temperature tolerant materials.
  138. Campbell,Kristy A., Resistance variable memory with temperature tolerant materials.
  139. Campbell,Kristy A., Resistance variable memory with temperature tolerant materials.
  140. Campbell, Kristy A.; Moore, John T.; Gilton, Terry L., Resistance variable ‘on ’ memory.
  141. Moore,John; Baker,R. Jacob, Rewrite prevention in a variable resistance memory.
  142. Williford,Ethan; Ingram,Mark, Sensing of resistance variable memory devices.
  143. Williford,Ethan; Ingram,Mark, Sensing of resistance variable memory devices.
  144. Li,Jiutao; Hampton,Keith; McTeer,Allen, Silver selenide film stoichiometry and morphology control in sputter deposition.
  145. Li,Jiutao; Hampton,Keith; McTeer,Allen, Silver selenide film stoichiometry and morphology control in sputter deposition.
  146. Campbell, Kristy A.; Moore, John T.; Gilton, Terry L., Single-polarity programmable resistance-variable memory element.
  147. Liu,Jun; Gilton,Terry L.; Moore,John T., Small electrode for resistance variable devices.
  148. Campbell, Kristy A., SnSe-based limited reprogrammable cell.
  149. Campbell,Kristy A., SnSe-based limited reprogrammable cell.
  150. Gilton, Terry L., Software refreshed memory device and method.
  151. Gilton, Terry L., Software refreshed memory device and method.
  152. Gilton,Terry L., Software refreshed memory device and method.
  153. Gilton,Terry L., Software refreshed memory device and method.
  154. Campbell, Kristy A., Stoichiometry for chalcogenide glasses useful for memory devices and method of formation.
  155. Kobayashi Nobuyoshi (Kawagoe JPX) Suzuki Masayuki (Kokubunji JPX) Kondo Seiichi (Kokubunji JPX) Matsui Makoto (Kunitachi JPX) Mukai Kiichiro (Hachioji JPX), Superconducting alloys comprising tungsten, molybdenum, silicon and oxygen.
  156. Gilton, Terry L., Thin film diode integrated with chalcogenide memory cell.
  157. Gilton,Terry L., Thin film diode integrated with chalcogenide memory cell.
  158. Hush, Glen; Moore, John, Variable resistance memory and method for sensing same.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로