High efficiency extraction method for recovering oxidation catalyst material from dimethyl terephthalate esterified oxid
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
B01J-038/68
C07C-067/48
C07C-067/08
출원번호
US-0227012
(1981-01-21)
발명자
/ 주소
King
Jr. William M. (New Hanover County NC)
출원인 / 주소
American Hoechst Corporation (Somerville NJ 02)
인용정보
피인용 횟수 :
4인용 특허 :
5
초록▼
Disclosed is a highly efficient continuous method for the aqueous extraction of water-soluble oxidation catalyst material from a residue such as that generated in the production of dimethyl terephthalate from p-xylene by the molecular oxygen oxidation and methanol esterification process. In the meth
Disclosed is a highly efficient continuous method for the aqueous extraction of water-soluble oxidation catalyst material from a residue such as that generated in the production of dimethyl terephthalate from p-xylene by the molecular oxygen oxidation and methanol esterification process. In the method the desired end product is an aqueous solution of the catalyst material. The residue to be extracted is established in finely dispersed condition in part of the aqueous solution at a weight ratio of aqueous solution to residue of above about 1:1 and maintained in that condition for a length of time sufficient for maximum transfer of catalyst material from the residue to the aqueous solution to take place. The resulting dispersion then is separated in a phase separation zone into an aqueous phase and an extracted residue phase. The separated aqueous phase is withdrawn from the phase separation zone as the aqueous solution. The separated extracted residue phase is withdrawn from the phase separation zone, and part of it is admixed gently with an aqueous solvent (for example, water) and returned to the phase separation zone.
대표청구항▼
A continuous method for the recovery of water-soluble oxidation catalyst material from a water-immiscible organic residue containing the same, in which an aqueous solution of said catalyst material is obtained, which comprises establishing said residue in finely divided dispersion in part of said aq
A continuous method for the recovery of water-soluble oxidation catalyst material from a water-immiscible organic residue containing the same, in which an aqueous solution of said catalyst material is obtained, which comprises establishing said residue in finely divided dispersion in part of said aqueous solution at a weight ratio of aqueous solution to said residue over 1:1, and maintaining said residue in said dispersion for a period of time sufficient for substantial transfer of said catalyst material from said residue to said aqueous solution, separating in a phase separation zone the dispersion into an aqueous phase and an extracted residue phase, withdrawing extracted residue phase from said separation zone, gently admixing at least half of said extracted residue phase with an aqueous solvent, and introducing the resulting mixture into said phase separation zone, withdrawing as said aqueous solution aqueous phase from said phase separation zone, discharging as extracted residue the remainder of the extracted residue phase, and discharging as an aqueous solution of recovered oxidation catalyst material the remainder of said aqueous solution. A continuous method for the recovery of water-soluble oxidation catalyst material from DMT esterified oxidate residue containing the same, in which an aqueous solution of said catalyst material is obtained, which comprises establishing said residue in finely divided dispersion in part of said aqueous solution at a weight ratio of aqueous solution to said residue over 1:1, and maintaining said residue in said dispersion for a period of time sufficient for substantial transfer of said catalyst material from said residue to said aqueous solution, separating in a phase separation zone the dispersion into an aqueous phase and an extracted residue phase, withdrawing extracted residue phase from said separation zone, gently admixing at least half of said extracted residue phase with an aqueous solvent, and introducing the resulting mixture into said phase separation zone, withdrawing as said aqueous solution aqueous phase from said phase separation zone, discharging as extracted residue the remainder of the extracted residue phase, and discharging as an aqueous solution of recovered oxidation catalyst material the remainder of said aqueous solution. A continuous method for the recovery of water-soluble catalyst material from a water-immiscible organic residue containing the same and inert under the conditions of this method, in which an aqueous solution of said catalyst material is obtained, which comprises establishing said residue in finely divided dispersion in part of said aqueous solution at a weight ratio of aqueous solution to said residue over 1:1, and maintaining said residue in said dispersion for a period of time sufficient for substantial transfer of said catalyst material from said residue to said aqueous solution, separating in a phase separation zone the dispersion into an aqueous phase and an extracted residue phase, withdrawing extracted residue phase from said separation zone, gently admixing at least half of said extracted residue phase with an aqueous solvent, and introducing the resulting mixture into said phase separation zone, withdrawing as said aqueous solution aqueous phase from said phase separation zone, discharging as extracted residue the remainder of the extracted residue phase, and discharging as an aqueous solution of recovered catalyst material the remainder of said aqueous solution.
연구과제 타임라인
LOADING...
LOADING...
LOADING...
LOADING...
LOADING...
이 특허에 인용된 특허 (5)
Eakman James M. (Houston TX) Clavenna LeRoy R. (Baytown TX), Hydrothermal alkali metal catalyst recovery process.
Liu, Zhufang; Howell, Jeff Scott, Process for removing metal species in the presence of hydrogen and a porous material and polyester polymer containing reduced amounts of metal species.
Liu, Zhufang; Howell, Jeff Scott, Process for removing metal species in the presence of hydrogen and a porous material and polyester polymer containing reduced amounts of metal species.
Liu,Zhufang; Howell,Jeff Scott, Process for removing metal species in the presence of hydrogen and a porous material and polyester polymer containing reduced amounts of metal species.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.