$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Thin film electro-optical devices 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • H01L-031/12
출원번호 US-0821643 (1986-01-23)
발명자 / 주소
  • Ovshinsky Stanford R. (Bloomfield Hills MI) Johnson Robert R. (Franklin MI) Hudgens Stephen J. (Southfield MI) Pryor Roger W. (Bloomfield Hills MI) Wicker Guy C. (Rochester Hills MI) Nolan Robert S.
출원인 / 주소
  • Energy Conversion Devices, Inc. (Troy MI 02)
인용정보 피인용 횟수 : 199  인용 특허 : 0

초록

An electro-optical communication device which includes a light transmissive conduit integrally formed to interconnect a light emitter and a light detector. The length over which the light transmissive conduit extends is substantially greater than the size of either the light emitter or the light det

대표청구항

An improved communications system employing electro-optical devices; said system comprising an integrated structure, said structure including very wide band gap, light transmissive conduit means and a plurality of active elements, each element including at least one layer of thin film amorphous sili

이 특허를 인용한 특허 (199)

  1. Daley, Jon; Campbell, Kristy A.; Brooks, Joseph F., Access transistor for memory device.
  2. Daley, Jon; Campbell, Kristy A.; Brooks, Joseph F., Access transistor for memory device.
  3. Daley, Jon; Campbell, Kristy A.; Brooks, Joseph F., Access transistor for memory device.
  4. Li, Jiutao, Agglomeration elimination for metal sputter deposition of chalcogenides.
  5. Li, Jiutao, Agglomeration elimination for metal sputter deposition of chalcogenides.
  6. Li, Jiutao, Agglomeration elimination for metal sputter deposition of chalcogenides.
  7. Li, Jiutao, Agglomeration elimination for metal sputter deposition of chalcogenides.
  8. Moore, John, Apparatus and method for dual cell common electrode PCRAM memory device.
  9. Campbell,Kristy A., Assemblies displaying differential negative resistance.
  10. Campbell, Kristy A., Assemblies displaying differential negative resistance, semiconductor constructions, and methods of forming assemblies displaying differential negative resistance.
  11. Campbell, Kristy A.; Gilton, Terry L.; Moore, John T.; Brooks, Joseph F., Chalcogenide glass constant current device, and its method of fabrication and operation.
  12. Campbell,Kristy A., Chalcogenide-based electrokinetic memory element and method of forming the same.
  13. Li, Jiutao; McTeer, Allen; Herdt, Gregory; Doan, Trung T., Co-sputter deposition of metal-doped chalcogenides.
  14. Li,Jiutao; McTeer,Allen; Herdt,Gregory; Doan,Trung T., Co-sputter deposition of metal-doped chalcogenides.
  15. Li,Jiutao; McTeer,Allen; Herdt,Gregory; Doan,Trung T., Co-sputter deposition of metal-doped chalcogenides.
  16. Nejad,Hasan; Seyyedy,Mirmajid, Columnar 1T-N memory cell structure.
  17. Hush, Glen; Baker, Jake, Complementary bit PCRAM sense amplifier and method of operation.
  18. Hush,Glen; Baker,Jake, Complementary bit resistance memory sensor and method of operation.
  19. Campbell, Kristy A., Continuously variable resistor.
  20. Campbell, Kristy A., Differential negative resistance memory.
  21. Campbell,Kristy A., Differential negative resistance memory.
  22. Campbell,Kristy A., Differential negative resistance memory.
  23. Yamazaki,Shunpei; Takemura,Yasuhiko, Display device having a thin film transistor.
  24. Moore, John T.; Brooks, Joseph F., Electrode structure for use in an integrated circuit.
  25. Moore,John T.; Brooks,Joseph F., Electrode structure for use in an integrated circuit.
  26. Imai, Shigeki; Nagai, Tomoyuki; Yamazaki, Shunpei; Koyama, Jun, Electronic circuit device.
  27. Imai,Shigeki; Nagai,Tomoyuki; Yamazaki,Shunpei; Koyama,Jun, Electronic circuit device with optical sensors and optical shutters at specific locations.
  28. Hartzell, Robert; Zhang, Qingmin, Electronic interface for long reach optical transceiver.
  29. Li, Jiutao; McTeer, Allen, Elimination of dendrite formation during metal/chalcogenide glass deposition.
  30. Li, Jiutao; McTeer, Allen, Elimination of dendrite formation during metal/chalcogenide glass deposition.
  31. Liu, Jun, Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication.
  32. Liu, Jun, Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication.
  33. Campbell,Kristy A.; Moore,John T.; Gilton,Terry L., Fabrication of single polarity programmable resistance structure.
  34. Yoshida, Seikoh; Wada, Takahiro; Takehara, Hironari, Field effect transistor and manufacturing method therefor.
  35. Hekmatshoartabari, Bahman; Sadana, Devendra K.; Haensch, Wilfried E.; Shahidi, Ghavam G.; Shahrjerdi, Davood, Field-effect photovoltaic elements.
  36. Li, Jiutao; Hampton, Keith; McTeer, Allen, Forming a memory device using sputtering to deposit silver-selenide film.
  37. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Graded GeSeconcentration in PCRAM.
  38. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Graded GexSe100-x concentration in PCRAM.
  39. Knights, Andrew Peter; Vonsovici, Adrian Petru; Brady, Dominic Joseph; House, Andrew Alan; Hopper, George Frederick, In-line light sensor.
  40. Knights, Andrew Peter; Vonsovici, Adrian Petru; Brady, Dominic Joseph; House, Andrew Alan; Hopper, George Frederick, In-line light sensor.
  41. Hoffman,Randy, Inorganic electroluminescent device with controlled hole and electron injection.
  42. Campbell, Kristy A.; Li, Jiutao; McTeer, Allen; Moore, John T., Layered resistance variable memory device and method of fabrication.
  43. Campbell, Kristy A.; Li, Jiutao; McTeer, Allen; Moore, John T., Layered resistance variable memory device and method of fabrication.
  44. Campbell,Kristy A.; Li,Jiutao; McTeer,Allen; Moore,John T., Layered resistance variable memory device and method of fabrication.
  45. Koyama, Tomoko; Kaneko, Takeo, Light emitting device, display device and electronic instrument.
  46. Daley,Jon, Memory array for increased bit density.
  47. Daley, Jon, Memory array for increased bit density and method of forming the same.
  48. Moore, John T.; Campbell, Kristy A., Memory device and methods of controlling resistance variation and resistance profile drift.
  49. Campbell, Kristy A., Memory device incorporating a resistance variable chalcogenide element.
  50. Campbell,Kristy A., Memory device with switching glass layer.
  51. Moore,John T.; Gilton,Terry L., Memory device, programmable resistance memory cell and memory array.
  52. Moore,John T.; Campbell,Kristy A.; Gilton,Terry L., Memory element and its method of formation.
  53. Daley, Jon; Brooks, Joseph F., Memory elements having patterned electrodes and method of forming the same.
  54. Daley, Jon; Brooks, Joseph F., Memory elements having patterned electrodes and method of forming the same.
  55. Daley,Jon, Method and apparatus for accessing a memory array.
  56. Campbell,Kristy A., Method and apparatus for providing color changing thin film material.
  57. Meier Daniel L. ; Davis Hubert P., Method and apparatus for self-doping negative and positive electrodes for silicon solar cells and other devices.
  58. Casper, Stephen L.; Duesman, Kevin; Hush, Glen, Method and apparatus for sensing resistive memory state.
  59. Hush, Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  60. Hush, Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  61. Hush, Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  62. Hush, Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  63. Hush,Glen, Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance.
  64. Li,Li; Li,Jiutao, Method for filling via with metal.
  65. Sieben, Ulrich; Igel, G?nter, Method for producing an optical transmitting and receiving device and a transmitting and receiving device produced according to said method.
  66. Moore,John T.; Brooks,Joseph F., Method of fabricating an electrode structure for use in an integrated circuit.
  67. Campbell,Kristy A., Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element.
  68. Brooks,Joseph F., Method of forming a chalcogenide material containing device.
  69. Brooks,Joseph F., Method of forming a chalcogenide material containing device.
  70. Campbell,Kristy A.; Gilton,Terry L.; Moore,John T., Method of forming a memory cell.
  71. Campbell, Kristy A., Method of forming a memory device incorporating a resistance variable chalcogenide element.
  72. Campbell, Kristy A., Method of forming a memory device incorporating a resistance variable chalcogenide element.
  73. Campbell, Kristy A., Method of forming a memory device incorporating a resistance-variable chalcogenide element.
  74. Moore, John T.; Gilton, Terry L., Method of forming a non-volatile resistance variable device.
  75. Moore,John T.; Campbell,Kristy A.; Gilton,Terry L., Method of forming a resistance variable memory element.
  76. Campbell, Kristy A., Method of forming a variable resistance memory device comprising tin selenide.
  77. Gilton, Terry L., Method of forming and storing data in a multiple state memory cell.
  78. Campbell, Kristy A.; Gilton, Terry L.; Moore, John T.; Li, Jiutao, Method of forming chalcogenide comprising devices.
  79. Moore,John T.; Brooks,Joseph F., Method of forming electrode structure for use in an integrated circuit.
  80. Moore, John T., Method of forming integrated circuitry, method of forming memory circuitry, and method of forming random access memory circuitry.
  81. Campbell,Kristy A.; Moore,John T., Method of forming non-volatile resistance variable devices and method of forming a programmable memory cell of memory circuitry.
  82. Campbell,Kristy A.; Gilton,Terry L.; Moore,John T.; Li,Jiutao, Method of forming resistance variable devices.
  83. Harshfield,Steven T.; Wright,David Q., Method of making a memory cell.
  84. Moore, John T.; Campbell, Kristy A.; Gilton, Terry L., Method of manufacture of a PCRAM memory cell.
  85. Moore,John T.; Campbell,Kristy A.; Gilton,Terry L., Method of manufacture of a PCRAM memory cell.
  86. Moore,John T.; Campbell,Kristy A.; Gilton,Terry L., Method of manufacture of a resistance variable memory cell.
  87. Gilton,Terry L., Method of manufacture of programmable conductor memory.
  88. Gilton, Terry L., Method of manufacture of programmable switching circuits and memory cells employing a glass layer.
  89. Hush,Glen; Baker,Jake, Method of operating a complementary bit resistance memory sensor.
  90. Hush,Glen; Baker,Jake, Method of operating a complementary bit resistance memory sensor and method of operation.
  91. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Method of refreshing a PCRAM memory device.
  92. Moore,John T.; Gilton,Terry L.; Campbell,Kristy A., Method of refreshing a PCRAM memory device.
  93. Campbell, Kristy A.; Moore, John; Gilton, Terry L.; Brooks, Joseph F., Method to alter chalcogenide glass for improved switching characteristics.
  94. Moore, John T.; Campbell, Kristy A.; Gilton, Terry L., Method to control silver concentration in a resistance variable memory element.
  95. Campbell, Kristy A., Methods and apparatus for resistance variable material cells.
  96. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Methods for forming chalcogenide glass-based memory elements.
  97. Moore,John T.; Gilton,Terry L., Methods of forming a semiconductor memory device.
  98. Daley, Jon, Methods of forming memory arrays for increased bit density.
  99. Giltom, Terry L.; Campbell, Kristy A.; Moore, John T., Methods of forming non-volatile resistance variable devices and methods of forming silver selenide comprising structures.
  100. Moore, John T.; Gilton, Terry L.; Campbell, Kristy A., Methods to form a memory cell with metal-rich metal chalcogenide.
  101. Moore,John T.; Gilton,Terry L.; Campbell,Kristy A., Methods to form a memory cell with metal-rich metal chalcogenide.
  102. Staudemeyer, Nhu-Phuong; Plickert, Volker; Melchior, Lutz, Multichannel optical transmitter.
  103. Gilton, Terry L., Multiple data state memory cell.
  104. Gilton,Terry L., Multiple data state memory cell.
  105. Gilton,Terry L., Multiple data state memory cell.
  106. Gilton, Terry L., Non-volatile memory structure.
  107. Gilton, Terry L., Non-volatile memory structure.
  108. Gilton,Terry L., Non-volatile memory structure.
  109. Gilton,Terry L., Non-volatile memory structure.
  110. Moore, John T., Non-volatile resistance variable device.
  111. Campbell,Kristy A.; Moore,John T., Non-volatile resistance variable devices.
  112. Campbell,Kristy A.; Gilton,Terry L.; Moore,John T., Non-volatile zero field splitting resonance memory.
  113. Yiu Ho-Yin,HKX ; Jan Chein-Ling,TWX ; Wang Jen-Pan,TWX ; Wu Lin-June,TWX, Optical sensor by using tunneling diode.
  114. Yiu, Ho-Yin; Jan, Chein-Ling; Wang, Jen-Pan; Wu, Lin-June, Optical sensor by using tunneling diode.
  115. Campbell, Kristy A., PCRAM device with switching glass layer.
  116. Campbell, Kristy A., PCRAM device with switching glass layer.
  117. Harshfield,Steven T.; Wright,David Q., PCRAM memory cell and method of making same.
  118. Moore, John; Baker, Jake, PCRAM rewrite prevention.
  119. Moore, John; Baker, R. Jacob, PCRAM rewrite prevention.
  120. Campbell, Kristy A., Phase change memory cell and method of formation.
  121. Campbell,Kristy A., Phase change memory cell and method of formation.
  122. Nakamura,Noboru; Taguchi,Mikio; Kawamoto,Kunihiro, Photovoltaic device with intrinsic amorphous film at junction, having varied optical band gap through thickness thereof.
  123. Li,Li; Gilton,Terry L.; Ko,Kei Yu; Moore,John T.; Signorini,Karen, Plasma etching methods and methods of forming memory devices comprising a chalcogenide comprising layer received operably proximate conductive electrodes.
  124. Hardy, Trevor; Porter, Steve; Williford, Ethan; Ingram, Mark, Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory.
  125. Hardy,Trevor; Porter,Steve; Williford,Ethan; Ingram,Mark, Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory.
  126. Hardy,Trevor; Porter,Steve; Williford,Ethan; Ingram,Mark, Power circuits for reducing a number of power supply voltage taps required for sensing a resistive memory.
  127. Klein, Dean A., Power management control and controlling memory refresh operations.
  128. Klein, Dean A., Power management control and controlling memory refresh operations.
  129. Klein, Dean A., Power management control and controlling memory refresh operations.
  130. ElHatem Abdul M. (Redondo Beach CA) Mojarradi Mohammad M. (Pullman WA) Sato Masaji (Torrance CA), Power supply regulator.
  131. Daley, Jon, Process for erasing chalcogenide variable resistance memory bits.
  132. Daley,Jon, Process for erasing chalcogenide variable resistance memory bits.
  133. Gilton, Terry L., Programmable conductor memory cell structure.
  134. Gilton, Terry L., Programmable conductor memory cell structure and method therefor.
  135. Hush, Glen, Programmable conductor random access memory and a method for writing thereto.
  136. Casper, Stephen L.; Duesman, Kevin; Hush, Glen, Programmable conductor random access memory and method for sensing same.
  137. Yau Leopoldo D. (Portland OR) Kawamoto Galen H. (Beaverton OR), Pulsed dual radio frequency CVD process.
  138. Takahashi, Toshiro, Radiation imaging element.
  139. Moore,John T., Resistance variable device.
  140. Harshfield, Steven T.; Wright, David Q., Resistance variable memory cells.
  141. Campbell,Kristy A., Resistance variable memory device and method of fabrication.
  142. Campbell,Kristy A., Resistance variable memory device and method of fabrication.
  143. Campbell,Kristy A., Resistance variable memory device and method of fabrication.
  144. Campbell, Kristy A.; Daley, Jon; Brooks, Joseph F., Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication.
  145. Campbell,Kristy A.; Daley,Jon; Brooks,Joseph F., Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication.
  146. Campbell,Kristy A.; Daley,Jon; Brooks,Joseph F., Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication.
  147. Campbell, Kristy A.; Gilton, Terry L.; Moore, John T.; Li, Jiutao, Resistance variable memory devices with passivating material.
  148. Moore, John T.; Campbell, Kristy A.; Gilton, Terry L., Resistance variable memory element and its method of formation.
  149. Campbell,Kristy A.; Daley,Jon; Brooks,Joseph F., Resistance variable memory element with threshold device and method of forming the same.
  150. Campbell,Kristy A.; Daley,Jon; Brooks,Joseph F., Resistance variable memory element with threshold device and method of forming the same.
  151. Campbell,Kristy A., Resistance variable memory elements and methods of formation.
  152. Campbell,Kristy A., Resistance variable memory elements based on polarized silver-selenide network growth.
  153. Campbell, Kristy A., Resistance variable memory with temperature tolerant materials.
  154. Campbell, Kristy A., Resistance variable memory with temperature tolerant materials.
  155. Campbell,Kristy A., Resistance variable memory with temperature tolerant materials.
  156. Campbell,Kristy A., Resistance variable memory with temperature tolerant materials.
  157. Campbell, Kristy A.; Moore, John T.; Gilton, Terry L., Resistance variable ‘on ’ memory.
  158. Moore,John; Baker,R. Jacob, Rewrite prevention in a variable resistance memory.
  159. Yamazaki,Shunpei; Takemura,Yasuhiko, Semiconductor device and method for forming the same.
  160. Kato,Kiyoshi; Takayama,Toru; Maruyama,Junya; Goto,Yuugo; Ohno,Yumiko, Semiconductor device comprising a light emitting element and a light receiving element.
  161. Yamazaki, Shunpei; Takemura, Yasuhiko, Semiconductor device having source/channel or drain/channel boundary regions.
  162. Yamazaki,Shunpei; Fujimoto,Etsuko; Isobe,Atsuo; Takayama,Toru; Fukuchi,Kunihiko, Semiconductor device with semiconductor circuit comprising semiconductor units, and method for fabricating it.
  163. Yamazaki, Shunpei; Fujimoto, Etsuko; Isobe, Atsuo; Takayama, Toru; Fukuchi, Kunihiko, Semiconductor device with semiconductor circuit comprising semiconductor units, and method of fabricating it.
  164. La Vecchia, Nunzio, Semiconductor element, especially a solar cell, and method for the production thereof.
  165. Koda, Rintaro; Arakida, Takahiro; Yamauchi, Yoshinori; Yamaguchi, Norihiko; Masui, Yuji, Semiconductor light emitting apparatus.
  166. Williford,Ethan; Ingram,Mark, Sensing of resistance variable memory devices.
  167. Williford,Ethan; Ingram,Mark, Sensing of resistance variable memory devices.
  168. Kenji Yamaguchi JP; Kazuki Mizushima JP; Kouichi Sassa JP, Silicon-and-nitrogen-containing luminescent substance, method for forming the same, and light emitting device using the same.
  169. Li,Jiutao; Hampton,Keith; McTeer,Allen, Silver selenide film stoichiometry and morphology control in sputter deposition.
  170. Li,Jiutao; Hampton,Keith; McTeer,Allen, Silver selenide film stoichiometry and morphology control in sputter deposition.
  171. Campbell, Kristy A.; Moore, John T.; Gilton, Terry L., Single-polarity programmable resistance-variable memory element.
  172. Liu,Jun; Gilton,Terry L.; Moore,John T., Small electrode for resistance variable devices.
  173. Campbell, Kristy A., SnSe-based limited reprogrammable cell.
  174. Campbell,Kristy A., SnSe-based limited reprogrammable cell.
  175. Gilton, Terry L., Software refreshed memory device and method.
  176. Gilton, Terry L., Software refreshed memory device and method.
  177. Gilton,Terry L., Software refreshed memory device and method.
  178. Gilton,Terry L., Software refreshed memory device and method.
  179. Pollard Howard E, Solar cell assembly.
  180. Schubert, Martin F.; Odnoblyudov, Vladimir, Solid state transducer devices, including devices having integrated electrostatic discharge protection, and associated systems and methods.
  181. Schubert, Martin F.; Odnoblyudov, Vladimir, Solid state transducer devices, including devices having integrated electrostatic discharge protection, and associated systems and methods.
  182. Schubert, Martin F.; Odnoblyudov, Vladimir, Solid state transducers with state detection, and associated systems and methods.
  183. McKay, Thomas G.; Allott, Stephen, Split source RF MOSFET device.
  184. Guter, Wolfgang; Fuhrmann, Daniel; Waechter, Clemens, Stacked optocoupler component.
  185. Campbell, Kristy A., Stoichiometry for chalcogenide glasses useful for memory devices and method of formation.
  186. Bowers, Jeffrey A.; Hyde, Roderick A.; Ishikawa, Muriel Y.; Jung, Edward K. Y.; Kare, Jordin T.; Leuthardt, Eric C.; Myhrvold, Nathan P.; Nugent, Jr., Thomas J.; Tegreene, Clarence T.; Whitmer, Charles; Wood, Jr., Lowell L., Storage container including multi-layer insulation composite material having bandgap material.
  187. Eckhoff, Philip A.; Gates, William; Hyde, Roderick A.; Jung, Edward K. Y.; Myhrvold, Nathan P.; Peterson, Nels R.; Tegreene, Clarence T.; Whitmer, Charles; Wood, Jr., Lowell L., Temperature-controlled storage systems.
  188. Hyde, Roderick A.; Jung, Edward K. Y.; Myhrvold, Nathan P.; Tegreene, Clarence T.; Gates, William; Whitmer, Charles; Wood, Jr., Lowell L., Temperature-stabilized medicinal storage systems.
  189. Deane, Geoffrey F.; Fowler, Lawrence Morgan; Gates, William; Guo, Zihong; Hyde, Roderick A.; Jung, Edward K. Y.; Kare, Jordin T.; Myhrvold, Nathan P.; Pegram, Nathan; Peterson, Nels R.; Tegreene, Clarence T.; Whitmer, Charles; Wood, Jr., Lowell L., Temperature-stabilized storage systems.
  190. Hyde, Roderick A.; Jung, Edward K. Y.; Myhrvold, Nathan P.; Tegreene, Clarence T.; Gates, III, William H.; Whitmer, Charles; Wood, Jr., Lowell L., Temperature-stabilized storage systems.
  191. Chou, Fong-Li; Deane, Geoffrey F.; Gates, William; Guo, Zihong; Hyde, Roderick A.; Jung, Edward K. Y.; Myhrvold, Nathan P.; Peterson, Nels R.; Tegreene, Clarence T.; Whitmer, Charles; Wood, Jr., Lowell L., Temperature-stabilized storage systems with flexible connectors.
  192. Bloedow, Jonathan; Calderon, Ryan; Friend, Michael; Gasperino, David; Gates, William; Hyde, Roderick A.; Jung, Edward K. Y.; Liu, Shieng; Myhrvold, Nathan P.; Pegram, Nathan John; Piech, David Keith; Stone, Shannon Weise; Tegreene, Clarence T.; Whitmer, Charles; Wood, Jr., Lowell L.; Yildirim, Ozgur Emek, Temperature-stabilized storage systems with integral regulated cooling.
  193. Bloedow, Jonathan; Calderon, Ryan; Gasperino, David; Gates, William; Hyde, Roderick A.; Jung, Edward K. Y.; Liu, Shieng; Myhrvold, Nathan P.; Pegram, Nathan John; Tegreene, Clarence T.; Whitmer, Charles; Wood, Jr., Lowell L.; Yildirim, Ozgur Emek, Temperature-stabilized storage systems with regulated cooling.
  194. Gilton, Terry L., Thin film diode integrated with chalcogenide memory cell.
  195. Gilton,Terry L., Thin film diode integrated with chalcogenide memory cell.
  196. Hoffman,Randy; Regan,Michael J.; Nakashima,Susan; Field,Marshall, Transparent active-matrix display.
  197. Hoffman,Randy, Transparent double-injection field-effect transistor.
  198. Hoffman,Randy, Transparent double-injection field-effect transistor.
  199. Hush, Glen; Moore, John, Variable resistance memory and method for sensing same.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로