$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Electrodes for electrical ceramic oxide devices 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • H01G-004/10
  • H01G-007/00
  • C23F-007/00
출원번호 US-0380942 (1989-07-17)
발명자 / 주소
  • Shepherd William H. (Mt. View CA)
출원인 / 주소
  • National Semiconductor Corporation (Santa Clara CA 02)
인용정보 피인용 횟수 : 74  인용 특허 : 4

초록

Electrodes composed of ruthenium, iridium, osmium, or rhodium and the electrically conductive oxides of these metals are particularly well-suited to use in electrical ceramic oxide devices because of the low resistivity of the oxides and the stability of the oxides under the processing conditions ne

대표청구항

An electrical ceramic oxide device including a first body of an electrical ceramic oxide material; an electrical conductive lead means; and a second body of an interfacing material connecting said first body to said lead means, wherein said second body includes a first portion of material selected f

이 특허에 인용된 특허 (4)

  1. de Bruin Henderikus Johannes (Bellvue Heights AU) Warble Charles Edward (Glen Waverley AU), Chemical bonding of metals to ceramic materials.
  2. Kaneko Norio (Kashiwa JPX) Niibe Masahito (Yokohama JPX), Composition for dielectric porcelain, dielectric porcelain and capacitor by use of said composition.
  3. Huang Rong F. (Albuquerque NM) Howng Wei-Yean (Albuquerque NM), Dielectric RF devices suited for use with superconductors.
  4. Yamaoka Nobutatsu (Harunamachi JPX) Sasazawa Kazuo (Maebashi JPX), Electroconductive paste to be baked on ceramic bodies to provide capacitors, varistors or the like.

이 특허를 인용한 특허 (74)

  1. Hickert George, Barrier layer to protect a ferroelectric capacitor after contact has been made to the capacitor electrode.
  2. Sandhu Gurtej S. ; Fazan Pierre C., Capacitor compatible with high dielectric constant materials having a low contact resistance layer and the method for f.
  3. Sandhu, Gurtej S.; Fazan, Pierre C., Capacitor compatible with high dielectric constant materials having a low contact resistance layer and the method for forming same.
  4. Sandhu,Gurtej S.; Fazan,Pierre C., Capacitor compatible with high dielectric constant materials having a low contact resistance layer and the method for forming same.
  5. Sandhu,Gurtej S.; Fazan,Pierre C., Capacitor compatible with high dielectric constant materials having a low contact resistance layer and the method for forming same.
  6. Fazan, Pierre C.; Sandhu, Gurtej S., Capacitor compatible with high dielectric constant materials having two independent insulative layers and the method for forming same.
  7. Marsh, Eugene P.; Kraus, Brenda D., Capacitor having RuSixOy-containing adhesion layers.
  8. Summerfelt Scott R., Conductive exotic-nitride barrier layer for high-dielectric-constant material electrodes.
  9. Summerfelt Scott R. (Dallas TX), Conductive exotic-nitride barrier layer for high-dielectric-constant material electrodes.
  10. Summerfelt Scott R. ; Reid Jason ; Nicolet Marc ; Kolawa Elzbieta, Conductive noble-metal-insulator-alloy barrier layer for high-dielectric-constant material electrodes.
  11. Spink, Scott A.; Lott, David R.; Fuglevand, William A., Direct liquid fuel cell.
  12. Sawada Kazuo (Osaka JPX) Nakamura Atsushi (Hisai JPX) Okugawa Isao (Suzuka JPX), Electric contact and method for producing the same.
  13. Summerfelt Scott R. (Dallas TX) Beratan Howard R. (Dallas TX), Electrodes comprising conductive perovskite-seed layers for perovskite dielectrics.
  14. Takashi Nakamura JP, Ferroelectric capacitor.
  15. Nakamura Takashi,JPX, Ferroelectric capacitor and a method for manufacturing thereof.
  16. Nakamura Takashi,JPX, Ferroelectric capacitor and a method for manufacturing thereof.
  17. Nakamura Takashi,JPX, Ferroelectric capacitor and a method for manufacturing thereof.
  18. Nakamura,Takashi, Ferroelectric capacitor and a method for manufacturing thereof.
  19. Takashi Nakamura JP, Ferroelectric capacitor and a method for manufacturing thereof.
  20. Summerfelt Scott R. (Dallas TX) Beratan Howard R. (Richardson TX) Kirlin Peter S. (Bethel CT) Gnade Bruce E. (Dallas TX), High-dielectric-constant material electrodes comprising thin platinum layers.
  21. Summerfelt Scott R. (Dallas TX) Beratan Howard R. (Richardson TX) Gnade Bruce E. (Dallas TX), High-dielectric-constant material electrodes comprising thin ruthenium dioxide layers.
  22. Kang Chang-seok,KRX, Integrated circuit ferroelectric memory devices including resistors in periphery region.
  23. Whitaker, Mark R.; Marentette, Leslie Joseph, Interrupt generation and acknowledgment for RFID.
  24. Bailey Richard A., Iridium oxide local interconnect.
  25. Whitaker, Mark R., Low power, low pin count interface for an RFID transponder.
  26. Fazan Pierre C. ; Sandhu Gurtej S., Method for forming a capacitor compatible with high dielectric constant materials having two independent insulative layers.
  27. Pierre C. Fazan ; Gurtej S. Sandhu, Method for forming a capacitor compatible with high dielectric constant materials having two independent insulative layers.
  28. Fazan Pierre C. ; Mathews Viju K., Method for forming a storage cell capacitor compatible with high dielectric constant materials.
  29. Fazan, Pierre C.; Mathews, Viju K., Method for forming a storage cell capacitor compatible with high dielectric constant materials.
  30. Fazan,Pierre C.; Mathews,Viju K., Method for forming a storage cell capacitor compatible with high dielectric constant materials.
  31. Fazan,Pierre C.; Mathews,Viju K., Method for forming a storage cell capacitor compatible with high dielectric constant materials.
  32. Fazan,Pierre C.; Mathews,Viju K., Method for forming a storage cell capacitor compatible with high dielectric constant materials.
  33. Nakamura, Takashi, Method for manufacturing a ferroelectric capacitor.
  34. Marsh, Eugene P., Method for the formation of RuSixOy-containing barrier layers for high-k dielectrics.
  35. Marsh, Eugene P., Method for the formation of RuSixOy-containing barrier layers for high-k dielectrics.
  36. Bailey Richard A., Method of forming iridium oxide local interconnect.
  37. Marsh, Eugene P.; Uhlenbrock, Stefan, Method of forming ruthenium and ruthenium oxide films on a semiconductor structure.
  38. Summerfelt Scott R. (Dallas TX), Method of making conductive amorphous-nitride barrier layer for high-dielectric-constant material electrodes.
  39. Marsh, Eugene P.; Kraus, Brenda D., Method of manufacturing a capacitor having RuSixOy-containing adhesion layers.
  40. Nakamura,Takashi, Method of manufacturing a ferroelectric capacitor having iridium oxide lower electrode.
  41. Takeharu Kuroiwa JP; Tsuyoshi Horikawa JP; Tetsuro Makita JP; Noboru Mikami JP; Teruo Shibano JP, Method of manufacturing semiconductor device which includes a capacitor having a lower electrode formed of iridium or ruthenium.
  42. Kang Chang-seok,KRX, Methods of fabricating integrated circuit ferroelectric memory devices including a material layer on the upper electrodes of the ferroelectric capacitors thereof.
  43. Cho, Sung-Il; Cho, Choong-rae; Lee, Eun-hong; Yoo, In-kyeong, Nonvolatile memory devices including oxygen-deficient metal oxide layers and methods of manufacturing the same.
  44. Cho, Sung-Il; Cho, Choong-rae; Lee, Eun-hong; Yoo, In-kyeong, Nonvolatile memory devices including oxygen-deficient metal oxide layers and methods of manufacturing the same.
  45. Jiang Bo ; Zurcher Peter ; Jones Robert E. ; White Bruce E., Plug protection process for use in the manufacture of embedded dynamic random access memory (DRAM) cells.
  46. Nishioka Yasushiro (Tsukuba JPX) Summerfelt Scott R. (Dallas TX) Park Kyung-ho (Tsukuba JPX) Bhattacharya Pijush (Tsukuba JPX), Pre-oxidizing high-dielectric-constant material electrodes.
  47. Brabazon Terry J. ; El-Kareh Badih ; Martin Stuart R. ; Rutten Matthew J. ; Kaanta Carter W., Precision analog metal-metal capacitor.
  48. Vaartstra Brian A., Precursor chemistries for chemical vapor deposition of ruthenium and ruthenium oxide.
  49. Eugene P. Marsh ; Brenda D. Kraus, Process for fabricating RuSixOy-containing adhesion layers.
  50. Marsh, Eugene P.; Kraus, Brenda D, Process for fabricating RuSixOy-containing adhesion layers.
  51. Marsh, Eugene P.; Kraus, Brenda D., Process for fabricating RuSixOy-containing adhesion layers.
  52. Marsh, Eugene P.; Kraus, Brenda D., Process for fabricating RuSixOy-containing adhesion layers.
  53. Jones ; Jr. Robert E. (Austin TX), Process for forming a nonvolatile random access memory array.
  54. Marsh, Eugene P., Process for the formation of RuSixOy-containing barrier layers for high-k dielectrics.
  55. Masahiro Tanaka JP; Miho Ami JP, Process for the manufacturing of oxide electrodes for ferroelectric capacitor.
  56. Spink, Scott A.; Lott, David R.; Wright, Matthew M.; Yemul, Dinesh S.; Fuglevand, William A.; Bayuuk, Shiblihanna I.; Duan, Runrun; Bai, Lijun, Proton exchange membrane fuel cell.
  57. Fuglevand, William A.; Bayyuk, Shibli Hanna I.; Wright, Matthew M., Proton exchange membrane fuel cell and method of forming a fuel cell.
  58. Spink, Scott A.; Lott, David R.; Wright, Matthew M.; Ryan, Eric J.; Yemul, Dinesh S.; Fisher, John M., Proton exchange membrane fuel cell stack and fuel cell stack module.
  59. Spink, Scott A.; Lott, David R.; Wright, Matthew M.; Ryan, Eric J.; Yemul, Dinesh S.; Fisher, John M., Proton exchange membrane fuel cell stack and fuel cell stack module.
  60. Spink, Scott A.; Lott, David R.; Wright, Matthew M.; Ryan, Eric J.; Yemul, Dinesh S.; Fisher, John M., Proton exchange membrane fuel cell stack and fuel cell stack module.
  61. Whitaker, Mark R.; Greefkes, Kirk, RFID interface and interrupt.
  62. Eugene P. Marsh ; Brenda D. Kraus, RuSixOy-containing adhesion layers.
  63. Marsh, Eugene P.; Kraus, Brenda D., RuSixOy-containing adhesion layers and process for fabricating the same.
  64. Marsh, Eugene P.; Kraus, Brenda D., RuSixOy-containing adhesion layers and process for fabricating the same.
  65. Marsh, Eugene P., RuSixOy-containing barrier layers for high-k dielectrics.
  66. Chou,Jung Chuan; Chen,Sheng Hung, Ruthenium oxide electrodes and fabrication method thereof.
  67. Summerfelt Scott R., Sacrificial oxygen sources to prevent reduction of oxygen containing materials.
  68. Horikawa Tsuyosi,JPX ; Makita Tetsuro,JPX ; Kuroiwa Takeharu,JPX ; Mikami Noboru,JPX ; Shibano Teruo,JPX, Semiconductor device having a capacitor electrode formed of iridum or ruthenium and a quantity of oxygen.
  69. Kuroiwa Takeharu,JPX ; Horikawa Tsuyoshi,JPX ; Makita Tetsuro,JPX ; Mikami Noboru,JPX ; Shibano Teruo,JPX, Semiconductor device which includes a capacitor having a lower electrode formed of iridium or ruthenium.
  70. Marsh, Eugene P.; Uhlenbrock, Stefan, Solvated ruthenium precursors for direct liquid injection of ruthenium and ruthenium oxide.
  71. Marsh, Eugene P.; Uhlenbrock, Stefan, Solvated ruthenium precursors for direct liquid injection of ruthenium and ruthenium oxide.
  72. Marsh, Eugene P.; Uhlenbrock, Stefan, Solvated ruthenium precursors for direct liquid injection of ruthenium and ruthenium oxide and method of using same.
  73. Fazan,Pierre C.; Mathews,Viju K., Storage cell capacitor compatible with high dielectric constant materials.
  74. Huffman Maria (Colorado Springs CO), Use of palladium as an adhesion layer and as an electrode in ferroelectric memory devices.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로