$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

In vivo implantable medical device with battery monitoring circuitry 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • A61N-001/378
출원번호 US-0743391 (1992-01-09)
우선권정보 SE-0000490 (1989-02-14); SE-0000491 (1989-02-14); SE-0000492 (1989-02-14); SE-0000493 (1989-02-14)
국제출원번호 PCT/FP90/00239 (1990-02-14)
§371/§102 date 19920109 (19920109)
국제공개번호 WO-9009208 (1990-08-23)
발명자 / 주소
  • Ekwall Christer (Spanga SEX)
출원인 / 주소
  • Siemens Aktiengesellschaft (Munich DEX 03)
인용정보 피인용 횟수 : 53  인용 특허 : 0

초록

It is known that modern implantable electromedical devices for the stimulation of a physiological function, such as pacemakers, are programmable to work in different stimulating modes and comprise sensing and evaluating means for monitoring the capacity of the battery within the device. In order to

대표청구항

An electromedical device comprising: stimulation means, adapted for in vivo implantation in a patient for stimulating a physiological function in said patient, mode selector means, connected to said stimulation means, for selecting one mode of stimulating said physiological function from a plurality

이 특허를 인용한 특허 (53)

  1. Hussain, Saadat, Battery life estimation based on voltage depletion rate.
  2. Seligman, Peter, Battery monitor and power demand adjuster.
  3. Black,Robert D., Circuits for in vivo detection of biomolecule concentrations using fluorescent tags.
  4. Colborn, John C., Delivering scheduled and unscheduled therapy without detriment to battery life or accuracy of longevity predictions.
  5. Colborn, John C., Delivering scheduled and unscheduled therapy without detriment to battery life or accuracy of longevity predictions.
  6. Colborn, John C., Device longevity prediction for a device having variable energy consumption.
  7. Colborn, John C., Device longevity prediction for a device having variable energy consumption.
  8. Colborn, John C., Device longevity prediction for a device having variable energy consumption.
  9. Parker, Jon; Thacker, James R., Devices for controlling high frequency spinal cord modulation for inhibiting pain, and associated systems and methods, including simplified contact selection.
  10. Alataris, Konstantinos; Walker, Andre B.; Thacker, James R., Devices for controlling high frequency spinal cord modulation for inhibiting pain, and associated systems and methods, including simplified controllers.
  11. Alataris, Konstantinos; Walker, Andre B.; Thacker, James R., Devices for controlling high frequency spinal cord modulation for inhibiting pain, and associated systems and methods, including simplified controllers.
  12. Walker, Andre B.; Parker, Jon; Alataris, Konstantinos; Thacker, James R., Devices for controlling high frequency spinal cord modulation for inhibiting pain, and associated systems and methods, including simplified program selection.
  13. Walker, Andre B.; Parker, Jon; Alataris, Konstantinos; Thacker, James R., Devices for controlling high frequency spinal cord modulation for inhibiting pain, and associated systems and methods, including simplified program selection.
  14. Walker, Andre B.; Parker, Jon; Alataris, Konstantinos; Thacker, James R., Devices for controlling high frequency spinal cord modulation for inhibiting pain, and associated systems and methods, including simplified program selection.
  15. Reinaldo Gurewitsch, Implantable cardiac device having precision RRT indication.
  16. Scarantino, Charles W.; Nagle, H. Troy; Hall, Lester C.; Mueller, Jeffrey; Kermani, Bahram Ghaffarzadeh, Implantable devices for dynamic monitoring of physiological and biological properties of tumors.
  17. Black,Robert D.; Bolick,Natasha, In vivo fluorescence sensors, systems, and related methods operating in conjunction with fluorescent analytes.
  18. Zadeh Ali Enayat, Meter for measuring battery charge delivered in an implantable device.
  19. Anderson, Eric C., Method and apparatus for correcting aspect ratio in a camera graphical user interface.
  20. Anderson, Eric C., Method and apparatus for correcting aspect ratio in a camera graphical user interface.
  21. Pavley, John F.; Anderson, Eric C., Method and apparatus for editing heterogeneous media objects in a digital imaging device.
  22. Pavley, John F.; Anderson, Eric C., Method and apparatus for editing heterogeneous media objects in a digital imaging device.
  23. Scarantino, Charles W.; Nagle, H. Troy; Hall, Lester C.; Mueller, Jeffrey; Kermani, Bahram Ghaffarzadeh, Methods and systems for monitoring patients undergoing treatment for cancer.
  24. Scarantino,Charles W.; Nagle,H. Troy; Kim,Chang Soo; Ufer,Stefan; Fiering,Jason; Kermani,Bahram Ghaffarzadeh, Methods, computer program products, and devices for calibrating chronically tissue implanted sensors using chronically tissue.
  25. Scarantino, Charles W.; Nagle, H. Troy; Hall, Lester C.; Mueller, Jeffrey; Kermani, Bahram G., Methods, systems, and associated implantable devices for detecting radiation in patients undergoing treatment for cancer.
  26. Scarantino, Charles W.; Nagle, H. Troy; Hall, Lester C.; Mueller, Jeffrey; Kermani, Bahram G., Methods, systems, and associated implantable devices for detecting radiation in patients undergoing treatment for cancer.
  27. Scarantino, Charles W.; Nagle, H. Troy; Hall, Lester C.; Mueller, Jeffrey; Kermani, Bahram G., Methods, systems, and associated implantable devices for detecting radiation in patients undergoing treatment for cancer.
  28. Charles W. Scarantino ; H. Troy Nagle ; Leslie C. Hall ; Jeffrey Mueller ; Chang-Soo Kim, Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors.
  29. Scarantino, Charles W.; Nagle, H. Troy; Hall, Lester C.; Mueller, Jeffrey, Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors.
  30. Scarantino, Charles W.; Nagle, H. Troy; Hall, Lester C.; Mueller, Jeffrey; Kermani, Bahram Ghaffarzadeh, Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors.
  31. Scarantino,Charles W.; Nagle,H. Troy; Hall,Lester C.; Mueller,Jeffrey; Kermani,Bahram Ghaffarzadeh, Methods, systems, and associated implantable devices for dynamic monitoring of physiological and biological properties of tumors.
  32. Scarantino, Charles W.; Nagle, H. Troy; Hall, Lester C.; Mueller, Jeffrey, Methods, systems, and associated implantable devices for radiation dose verification for therapies used to treat tumors.
  33. Law,Jay; Borkan,William; Ehren,Lance; Van Campen,George; Erickson,John, Multiprogrammable tissue stimulator and method.
  34. Parker, Jon, Physician programmer with enhanced graphical user interface, and associated systems and methods.
  35. Armstrong, Randolph K.; Armstrong, Scott A.; Inman, D. Michael; Scott, Timothy L., Power supply monitoring for an implantable device.
  36. Armstrong, Randolph K.; Armstrong, Scott A.; Inman, D. Michael; Scott, Timothy L., Power supply monitoring for an implantable device.
  37. Armstrong, Randolph K.; Guzman, Albert W.; Nguyen, Huan D., Power supply monitoring for an implantable device.
  38. Armstrong, Randolph; Armstrong, Scott A.; Inman, Dana Michael; Scott, Timothy, Power supply monitoring for an implantable device.
  39. Ries, Andrew J.; Schmidt, Craig L., Recommended replacement time based on user selection.
  40. Mann Brian M., Recommended replacement time trigger for use within an implantable rate-responsive pacemaker.
  41. Betzold, Robert A.; Busacker, James W., Replacement indicator timer for implantable medical devices.
  42. Black, Robert D.; Mann, Gregory Glenwood; Widener, Steven R.; Lehman, Phillip M., Single-use external dosimeters for use in radiation therapies.
  43. Widener, Steven R.; Carroll, John, Single-use external dosimeters for use in radiation therapies and related devices and computer program products.
  44. Widener,Steven R.; Carroll,John, Single-use external dosimeters for use in radiation therapies and related methods and systems.
  45. Black,Robert D.; Widener,Steven R.; Carroll,John; Mann,Gregory Glenwood; Lehman,Phillip M., Single-use internal dosimeters for detecting radiation in fluoroscopy and other medical procedures/therapies.
  46. Anderson Eric C. ; Fullam Scott F., System and method for conserving power within a backup battery device.
  47. Nguyen, Thanh T.; Jiang, Junwei, System and method for detecting battery failure during a non-operating event.
  48. Koopman Jan (Dieren NLX), System and method for determining indicated pacemaker replacement time based upon battery impedance measurement.
  49. Merritt, Donald R.; Jain, Mukul; Busacker, James W.; Crandall, Kathleen U.; Kleckner, Karen J., System and method for determining remaining battery life for an implantable medical device.
  50. Cowley, Anthony W.; Hussain, Saadat, System and method for estimating battery capacity.
  51. Suddarth,Steven; Scarantino,Charles W.; Black,Robert D., Systems, methods and devices for in vivo monitoring of a localized response via a radiolabeled analyte in a subject.
  52. Evans, Gregory Morgan; Evans, James; Roberts, Thomas, Venue based digital rights using capture device with digital watermarking capability.
  53. Mack, Hanns-Ingo, Wireless battery status management for medical devices.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로