$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Minute volume rate-responsive pacemaker employing impedance sensing on a unipolar lead 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • A61N-001/365
출원번호 US-0833435 (1992-02-10)
발명자 / 주소
  • Steinhaus Bruce M. (Parker) Nappholz Tibor A. (Englewood) Nolan James A. (Conifer) Morris Robert A. (Palmer Lake CO)
출원인 / 주소
  • Telectronics Pacing Systems, Inc. (Englewood CO 02)
인용정보 피인용 횟수 : 95  인용 특허 : 0

초록

A rate-responsive pacemaker employing a rate control parameter of respiratory minute volume, derived over a unipolar lead. The pacemaker performs the minute volume measurement by periodically applying a measuring current between the lead and a reference point on the pacemaker case. This measuring cu

대표청구항

A rate-responsive pacemaker comprising: pulsing means for providing pacing pulses at a controlled rate; a unipolar lead coupled to said pulsing means and having an electrode adapated to couple said pulsing means to a patient\s heart; means for periodically introducing a measuring current between sai

이 특허를 인용한 특허 (95)

  1. Bonnet, Jean-Luc, Active implantable medical device for treating sleep apnea syndrome by electrostimulation.
  2. Burnes,John E.; Cho,Yong K.; Igel,David; Mongeon,Luc R.; Rueter,John C.; Stone,Harry; Zilinski,Jodi, Algorithm for the automatic determination of optimal AV an VV intervals.
  3. Burnes, John E.; Cho, Yong K.; Igel, David; Mongeon, Luc R.; Rueter, John C.; Stone, Harry; Zilinski, Jodi, Algorithm for the automatic determination of optimal AV and VV intervals.
  4. Burnes, John E.; Cho, Yong K.; Igel, David; Mongeon, Luc R.; Rueter, John C.; Stone, Harry; Zilinski, Jodi, Algorithm for the automatic determination of optimal AV and VV intervals.
  5. Armstrong, Randolph K.; Rodriguez, Albert A.; Maschino, Steven E., Alternative operation mode for an implantable medical device based upon lead condition.
  6. Christopher M. Manrodt ; H. Toby Markowitz ; Bradley C. Peck, Apparatus and method for detecting micro-dislodgment of a pacing lead.
  7. David J. Yonce, Automatic input impedance balancing for electrocardiogram (ECG) sensing applications.
  8. Yonce, David J., Automatic input impedance balancing for electrocardiogram (ECG) sensing applications.
  9. Freeberg, Scott, Automatically configurable minute ventilation sensor.
  10. Hussain, Saadat, Battery life estimation based on voltage depletion rate.
  11. Kim, Jaeho; Ni, Quan, Cardiac cycle synchronized sampling of impedance signal.
  12. Kim, Jaeho; Ni, Quan, Cardiac cycle synchronized sampling of impedance signal.
  13. Kim, Jaeho; Ni, Quan, Cardiac cycle synchronized sampling of impedance signal.
  14. Kim, Jaeho; Ni, Quan, Cardiac cycle synchronized sampling of impedance signal.
  15. Kim,Jaeho; Ni,Quan, Cardiac cycle synchronized sampling of impedance signal.
  16. Ferek-Petric Bozidar (Zagreb HRX), Cardiac electrotherapy device for cardiac contraction measurement.
  17. Maschino, Steven E.; Thompson, David, Controlling neuromodulation using stimulus modalities.
  18. Freeberg, Scott, Cross-checking of transthoracic impedance and acceleration signals.
  19. Freeberg, Scott, Cross-checking of transthoracic impedance and acceleration signals.
  20. Colborn, John C., Delivering scheduled and unscheduled therapy without detriment to battery life or accuracy of longevity predictions.
  21. Colborn, John C., Delivering scheduled and unscheduled therapy without detriment to battery life or accuracy of longevity predictions.
  22. KenKnight, Bruce H.; Zhu, Qingsheng, Demand-based cardiac function therapy.
  23. KenKnight,Bruce H.; Zhu,Qingsheng, Demand-based cardiac function therapy.
  24. Colborn, John C., Device longevity prediction for a device having variable energy consumption.
  25. Colborn, John C., Device longevity prediction for a device having variable energy consumption.
  26. Colborn, John C., Device longevity prediction for a device having variable energy consumption.
  27. Ideker,Raymond E.; Walcott,Gregory P., Devices for detecting the presence of cardiac activity following administration of defibrillation therapy.
  28. Cooper Daniel (Lakewood CO), Dual sensor rate responsive pacemaker.
  29. Armstrong, Randolph K., Dynamic lead condition detection for an implantable medical device.
  30. Inman, D. Michael, Electrode assembly with fibers for a medical device.
  31. Inman, D. Michael, Electrode assembly with fibers for a medical device.
  32. Spear, Thomas H.; Germanson, Nancy M.; Miller, Patrick D., Fault tolerant methods and architectures for embedded intelligence in medical leads.
  33. Inman, D. Michael; Begnaud, Jason D., Heat dissipation for a lead assembly.
  34. Cowley, Anthony W., Helical electrode for nerve stimulation.
  35. Kroll Mark W., ICD with rate-responsive pacing.
  36. Park, Euljoon; Falkenberg, Eric; Bornzin, Gene A.; Mai, Junyu, Implantable cardiac device for managing the progression of heart disease and method.
  37. Prutchi David ; Paul Patrick J., Implantable cardiac stimulator with capture detection and impedance based autotuning of capture detection.
  38. Paul Patrick J. ; Prutchi David, Implantable cardiac stimulator with impedance based autothreshold.
  39. Prutchi David ; Paul Patrick J., Implantable cardiac stimulator with safe noise mode.
  40. Jorgenson David J. ; Starkson Ross O. ; McVenes Rick D. ; Trautmann Charles D. ; Wahlstrand John D. ; Peck Bradley C., Implantable lead functional status monitor and method.
  41. Jorgenson, David J.; Starkson, Ross O.; McVenes, Rick D.; Trautmann, Charles D.; Wahlstrand, John D.; Peck, Bradley C., Implantable lead functional status monitor and method.
  42. Armstrong, Randolph K.; Armstrong, Scott A., Implantable medical device charge balance assessment.
  43. Defares Peter Bernard,NLX ; De Willigen Cornelis Adriaan,NLX ; Verveen Eduard Theodorus,NLX, Interactive respiratory regulator.
  44. Germanson, Nancy M.; Spear, Thomas H.; Miller, Patrick David, Isolated lead conductor measurements for fault detection.
  45. Miller, Patrick D.; Spear, Thomas H.; Germanson, Nancy M., Isolating lead body for fault detection.
  46. Miller, Patrick D.; Spear, Thomas H.; Germanson, Nancy M., Isolating lead body for fault detection.
  47. Germanson, Nancy M.; Spear, Thomas H.; Miller, Patrick David, Isolating lead conductor for fault detection.
  48. Armstrong, Randolph K., Lead condition assessment for an implantable medical device.
  49. Armstrong, Randolph K., Lead condition assessment for an implantable medical device.
  50. Armstrong, Randolph K., Lead condition assessment for an implantable medical device.
  51. Gunderson, Bruce D, Lead monitoring frequency based on lead and patient characteristics.
  52. Gunderson, Bruce D, Lead monitoring frequency based on lead and patient characteristics.
  53. Gunderson, Bruce D, Lead monitoring frequency based on lead and patient characteristics.
  54. Spear, Thomas H.; Germanson, Nancy M., Method and apparatus to manage lead-related conditions for fault tolerance enhancements.
  55. Spear, Thomas H.; Germanson, Nancy M.; Miller, Patrick D., Method and apparatus to manage lead-related conditions for fault tolerance enhancements.
  56. Spear, Thomas H; Germanson, Nancy M, Method and apparatus to manage lead-related conditions for fault tolerance enhancements.
  57. Huvelle,Etienne; Sanchez,Francisca Cuesta, Method and apparatuses for monitoring hemodynamic activities using an intracardiac impedance-derived parameter.
  58. G. Neal Kay ; Donald L. Hopper ; Jan-Pieter Heemells BE; Jeff Hall, Method of determining a ventilatory threshold breakpoint for an adaptive rate pacemaker.
  59. Ideker, Raymond E.; Walcott, Gregory P., Methods and systems for reducing discomfort from cardiac defibrillation shocks.
  60. Ideker, Raymond E.; Walcott, Gregory P., Methods, systems and computer program products to inhibit ventricular fibrillation during cardiopulmonary resuscitation.
  61. Ideker, Raymond E.; Walcott, Gregory P., Methods, systems and computer program products to inhibit ventricular fibrillation during cardiopulmonary resuscitation.
  62. Larson,Dennis E.; Daum,Douglas R., Minute ventilation sensor with dynamically adjusted excitation current.
  63. Mathis, Scott; Prentice, John K.; Schmidt, John A.; Rottenberg, William B., Multi-electrode apparatus and method for treatment of congestive heart failure.
  64. Maschino, Steven E.; Byerman, Bryan P., Multi-electrode assembly for an implantable medical device.
  65. Cinbis Can ; Reinke James D. ; Tanji Todd M., Non-physiologic sense detection for implantable medical devices.
  66. Cinbis Can ; Reinke James D. ; Tanji Todd M., Pacing lead impedance monitoring circuit and method.
  67. Raymond E. Ideker ; Jonathan C. Newton, Pacing methods and devices for treating cardiac arrhythmias and fibrillation.
  68. Ideker,Raymond E.; Walcott,Gregory P., Pacing methods and devices using feedback controlled timing.
  69. Berthon Jones,Michael, Patient-ventilator synchronization using dual phase sensors.
  70. Berthon-Jones, Michael, Patient-ventilator synchronization using dual phase sensors.
  71. Ideker, Raymond E.; Walcott, Gregory P., Post-defibrillation pacing methods and devices.
  72. Armstrong, Randolph K.; Armstrong, Scott A.; Inman, D. Michael; Scott, Timothy L., Power supply monitoring for an implantable device.
  73. Armstrong, Randolph K.; Armstrong, Scott A.; Inman, D. Michael; Scott, Timothy L., Power supply monitoring for an implantable device.
  74. Armstrong, Randolph K.; Guzman, Albert W.; Nguyen, Huan D., Power supply monitoring for an implantable device.
  75. Armstrong, Randolph; Armstrong, Scott A.; Inman, Dana Michael; Scott, Timothy, Power supply monitoring for an implantable device.
  76. Hartley Jesse W. ; Cohen Marc H. ; Stessman Nicholas J. ; Reedstrom Scott A. ; Check Steven D. ; Nelson James P., Rate adaptive cardiac rhythm management device using transthoracic impedance.
  77. Hartley Jesse W. ; Cohen Marc H. ; Stessman Nicholas J. ; Reedstrom Scott A. ; Check Steven D. ; Nelson James P., Rate adaptive cardiac rhythm management device using transthoracic impedance.
  78. Jesse W. Hartley ; Marc H. Cohen ; Nicholas J. Stessman ; Scott A. Reedstrom ; Steven D. Check ; James P. Nelson, Rate adaptive cardiac rhythm management device using transthoracic impedance.
  79. Prutchi David (Lake Jackson TX), Rate responsive cardiac pacemaker with impedance sensing.
  80. Stotts Lawrence J. ; Schroeppel Edward A., Rate responsive cardiac pacemaker with peak impedance detection for rate control.
  81. Daum,Douglas R.; Zhu,Qingsheng; Scheiner,Avram, Respiration signal measurement apparatus, systems, and methods.
  82. Stein Paul M. ; Bennett Tom D. ; Williams Terrell M., Respiratory muscle electromyographic rate responsive pacemaker.
  83. Carlson,Gerrard M.; Berger,Ronald D., Statistical method for assessing autonomic balance.
  84. Carlson,Gerrard M.; Berger,Ronald D., Statistical method for assessing autonomic balance.
  85. Cowley, Anthony W.; Hussain, Saadat, System and method for estimating battery capacity.
  86. Shambroom,John R.; Smith,Charles P., System and method for measuring bioelectric impedance in the presence of interference.
  87. Shambroom, John R.; Smith, Charles P., System and method for measuring the validity of a bioelectric impedance measurement in the presence of interference.
  88. Scheiner, Avram; Hopper, Donald L.; Carlson, Gerrard M., System and method for monitoring autonomic balance and physical activity.
  89. Scheiner, Avram; Hopper, Donald; Carlson, Gerrard M., System and method for monitoring autonomic balance and physical activity.
  90. Zhang, Hongxuan, System for heart performance characterization and abnormality detection.
  91. Maschino, Steven E., Using physiological sensor data with an implantable medical device.
  92. David J. Yonce, Voltage sensing system with input impedance balancing for electrocardiogram (ECG) sensing applications.
  93. Yonce David J., Voltage sensing system with input impedance balancing for electrocardiogram (ECG) sensing applications.
  94. Yonce, David J., Voltage sensing system with input impedance balancing for electrocardiogram (ECG) sensing applications.
  95. Yonce, David J., Voltage sensing system with input impedance balancing for electrocardiogram (ECG) sensing applications.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로