$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

RIE process for fabricating submicron, silicon electromechanical structures 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • H01L-021/44
  • H01L-021/48
  • H01L-021/90
출원번호 US-0038879 (1993-03-29)
발명자 / 주소
  • MacDonald Noel C. (Ithaca NY) Zhang Zuoying L. (Ithaca NY)
출원인 / 주소
  • Cornell Research Foundation, Inc. (Ithaca NY 02)
인용정보 피인용 횟수 : 77  인용 특허 : 0

초록

A reactive ion etching process is used for the fabrication of submicron, single crystal silicon, movable mechanical structures and capacitive actuators. The reactive ion etching process gives excellent control of lateral dimensions while maintaining a large vertical depth in the formation of high as

대표청구항

A reactive ion etching process for fabricating a high aspect ratio, submicron, released, single crystal silicon electromechanical structure independently of crystal orientation, comprising: forming a patterned etch mask on a top surface of a single crystal silicon substrate, the etch mask defining a

이 특허를 인용한 특허 (77)

  1. Andrew Duncan McQuarrie ; Lee Campbell Boman, Apparatus for etching a workpiece.
  2. McAlexander, III, Joseph Colby, Bi-directional released-beam sensor.
  3. McAlexander, III,Joseph Colby, Bi-directional released-beam sensor.
  4. Adams, Scott G.; Davis, Tim, Boundary isolation for microelectromechanical devices.
  5. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Device selection circuitry constructed with nanotube ribbon technology.
  6. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Device selection circuitry constructed with nanotube technology.
  7. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having horizontally-disposed nanofabric articles and methods of making the same.
  8. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  9. Miller Scott A. ; Turner Kimberly L. ; MacDonald Noel C., Drive electrodes for microfabricated torsional cantilevers.
  10. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  11. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  12. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  13. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory having cell selection circuitry constructed with nanotube technology.
  14. Rueckes, Thomas; Segal, Brent M.; Bertin, Claude L., Electromechanical three-trace junction devices.
  15. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Electromechanical three-trace junction devices.
  16. Rueckes,Thomas; Segal,Brent M.; Bertin,Claude, Electromechanical three-trace junction devices.
  17. Adams,Scott; Davis,Tim; Miller,Scott; Shaw,Kevin; Chong,John Matthew; Lee,Seung (Chris) Bok, Electrostatic actuator for microelectromechanical systems and methods of fabrication.
  18. Adams,Scott; Davis,Tim; Miller,Scott; Shaw,Kevin; Chong,John Matthew; Lee,Seung Bok (Chris), Electrostatic actuator for microelectromechanical systems and methods of fabrication.
  19. Adams, Scott; Davis, Tim; Miller, Scott; Shaw, Kevin; Chong, John Matthew; Lee, Seung Bok (Chris), Electrostatic actuator for micromechanical systems.
  20. Hsieh,Jerwei; Chu,Huai Yuan; Tsai,Julius Ming Lin; Fang,Weileun, High-aspect-ratio-microstructure (HARM).
  21. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  22. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Hybrid circuit having nanotube electromechanical memory.
  23. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Hybrid circuit having nanotube electromechanical memory.
  24. James Harold Powers ; Carl Edmond Sullivan, Ink jet printheads and methods therefor.
  25. Davis, Timothy J.; Adams, Scott G., Integrated large area microstructures and micromechanical devices.
  26. Blanchard,Richard A.; McAlexander,Joseph C., Integrated released beam layer structure fabricated in trenches and manufacturing method thereof.
  27. Shealy J. Richard ; MacDonald Noel C., Light-emitting, nanometer scale, micromachined silicon tips.
  28. MacDonald Noel C. (Ithaca NY) Jazairy Ali (Ithaca NY), Masking process for fabricating ultra-high aspect ratio, wafer-free micro-opto-electromechanical structures.
  29. MacDonald, Noel C.; Aimi, Marco F., Metal MEMS devices and methods of making same.
  30. MacDonald,Noel C.; Aimi,Marco F., Metal MEMS devices and methods of making same.
  31. Andrew Duncan McQuarrie, Method and apparatus for manufacturing a micromechanical device.
  32. Franosch, Martin; Wittmann, Reinhard; Pusch, Catharina, Method for the manufacture of micro-mechanical components.
  33. Chong, John M.; Waldrop, Paul; Davis, Tim; Adams, Scott, Method of fabricating semiconductor wafers having multiple height subsurface layers.
  34. Doong Yih-Yuh,TWX ; Hsieh Yong-Fen,TWX, Method of forming precisely cross-sectioned electron-transparent samples.
  35. Rajeevakumar Thekkemadathil Velayudhan (Scarsdale NY), Method of making DRAM cell with trench under device for 256 Mb DRAM and beyond.
  36. Chui Benjamin W. ; Kenny Thomas W., Method of making electrical elements on the sidewalls of micromechanical structures.
  37. Nitta Koichi,JPX ; Ishimatsu Sumio,JPX, Method of manufacturing blue light-emitting device by using BCL3 and CL2.
  38. Muto, Hiroshi; Fukada, Tsuyoshi; Ao, Kenichi; Sakai, Minekazu; Takeuchi, Yukihiro; Kano, Kazuhiko; Oohara, Junji, Method of manufacturing semiconductor device capable of sensing dynamic quantity.
  39. Muto, Hiroshi; Fukada, Tsuyoshi; Ao, Kenichi; Sakai, Minekazu; Takeuchi, Yukihiro; Kano, Kazuhiko; Oohara, Junji, Method of manufacturing semiconductor device capable of sensing dynamic quantity.
  40. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  41. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  42. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  43. Rueckes, Thomas; Segal, Brent M., Methods of nanotube films and articles.
  44. Rueckes,Thomas; Segal,Brent M., Methods of nanotube films and articles.
  45. Rueckes,Thomas; Segal,Brent M., Methods of nanotubes films and articles.
  46. Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  47. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  48. Bowers, John Edward; Helkey, Roger Jonathan; Corbalis, Charles; Sink, Robert Kehl; Lee, Seung Bok; MacDonald, Noel, Micro-electro-mechanical-system (MEMS) mirror device and methods for fabricating the same.
  49. Lee, Seung Bok; MacDonald, Noel, Micro-electro-mechanical-system (MEMS) mirror device having large angle out of plane motion using shaped combed finger actuators and method for fabricating the same.
  50. Galvin Gregory J. ; Davis Timothy J. ; MacDonald Noel C., Microelectromechanical accelerometer for automotive applications.
  51. Dhuler Vijayakumar R., Microelectromechanical device having single crystalline components and metallic components.
  52. Dhuler, Vijayakumar R., Microelectromechanical device having single crystalline components and metallic components.
  53. Liou, Tsyr-Shyang, Microelectromechanical system (MEMS) device and methods for fabricating the same.
  54. Haronian Dan,ILX ; MacDonald Noel C., Microelectromechanics-based frequency signature sensor.
  55. Miller Scott A. ; MacDonald Noel C. ; Xu Yang, Microfabricated torsional cantilevers for sensitive force detection.
  56. Chong John M. ; Adams Scott G. ; MacDonald Noel C. ; Shaw Kevin A., Microfabrication process for enclosed microstructures.
  57. Galvin Gregory J. ; Davis Timothy J. ; MacDonald Noel C., Micromechanical accelerometer for automotive applications.
  58. MacDonald Noel C. ; Shaw Kevin A. ; Adams Scott G., Micromechanical accelerometer for automotive applications.
  59. Saif Muhammad T. A. ; Huang Trent ; MacDonald Noel C., Micromotion amplifier.
  60. Gopal, Vidyut; Chinn, Jeffrey D., Microstructure devices, methods of forming a microstructure device and a method of forming a MEMS device.
  61. Hofmann, Wolfgang M. J.; Neves, Hercules; MacDonald, Noel C.; Adams, Scott G., Multiple-level actuators and clamping devices.
  62. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  63. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  64. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  65. Arturo A. Ayon, Plasma etch techniques for fabricating silicon structures from a substrate.
  66. Peeters, John P., Rapid method for determining potential binding sites of a protein.
  67. Bergstrom Paul L. ; Ger Muh-Ling, Semiconductor device having a cavity and method of making.
  68. Nakaki Yoshiyuki,JPX ; Ishikawa Tomohiro,JPX ; Ueno Masashi,JPX ; Hata Hisatoshi,JPX ; Kimata Masafumi,JPX, Sensor element with removal resistance region.
  69. Chong, John; Lee, Seung Bok; MacDonald, Noel; Lewis, Robert; Hunt, Peter, Shaped electrodes for micro-electro-mechanical-system (MEMS) devices to improve actuator performance and methods for fabricating the same.
  70. Field Leslie A. ; Barth Phillip W., Silicon microstructures and process for their fabrication.
  71. Petersen Kurt E. ; Maluf Nadim ; McCulley Wendell ; Logan John ; Klaasen Erno ; Noworolski Jan M., Single crystal silicon sensor with high aspect ratio and curvilinear structures.
  72. Petersen Kurt E. ; Maluf Nadim ; McCulley Wendell ; Logan John ; Klaasen Erno ; Noworolski Jan Mark, Single crystal silicon sensor with high aspect ratio and curvilinear structures.
  73. Chong John M. ; MacDonald Noel C., Suspended moving channels and channel actuators for microfluidic applications and method for making.
  74. John M. Chong ; Noel C. MacDonald, Suspended moving channels and channel actuators for microfluidic applications and method for making.
  75. MacDonald Noel C. ; Huang Xiaojun Trent ; Chen Liang-Yuh, Trench-filling etch-masking microfabrication technique.
  76. Cho, Dong-il; Lee, Sangwoo; Park, Sangjun, Triple layer isolation for silicon microstructure and structures formed using the same.
  77. McAlexander, III,Joseph Colby, Weighted released-beam sensor.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로