$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Confocal optical apparatus 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • G02B-021/00
  • G02B-021/36
  • G02B-021/22
  • G03H-001/00
출원번호 US-0436469 (1995-05-26)
우선권정보 JP-0245438 (1993-09-30)
국제출원번호 PCT/JP94/01633 (1994-09-30)
§371/§102 date 1995May2 (1995May2)
국제공개번호 WO-9509346 (1995-04-06)
발명자 / 주소
  • Wakai Hideyuki (Hiratsuka JPX) Mizoguchi Kiyokazu (Hiratsuka JPX) Suzuki Toru (Hiratsuka JPX) Terada Keiji (Hiratsuka JPX) Moriya Masato (Hiratsuka JPX) Ando Manabu (Hiratsuka JPX) Shio Koji (Hiratsu
출원인 / 주소
  • Kabushiki Kaisha Komatsu SEisakusho (Tokyo JPX 03)
인용정보 피인용 횟수 : 96  인용 특허 : 2

초록

A confocal optical apparatus comprising a light source, a first aperture portion for passing light emitted from the light source and obtaining a point source, an objective lens for causing the light that has passed through the first aperture portion to converge on a measurement object, a second aper

대표청구항

A confocal optical apparatus comprising: a surface light ray generating means for generating surface light rays; an aperture array comprising a plurality of apertures for light passage arranged in two dimensions, for passing therethrough the surface light rays from the surface light ray generating m

이 특허에 인용된 특허 (2)

  1. Hayes Lance E. (324 Hillsmere Dr. Annapolis MD 21403), Decorative outdoor light fixture.
  2. Burton Edward A. (Lindon UT), Integrated circuit device with user-programmable conditional power-down means.

이 특허를 인용한 특허 (96)

  1. Hill,Henry Allen, Apparatus and method for ellipsometric measurements with high spatial resolution.
  2. Hill,Henry Allen, Apparatus and method for high speed scan for detection and measurement of properties of sub-wavelength defects and artifacts in semiconductor and mask metrology.
  3. Hill,Henry Allen, Apparatus and method for joint and time delayed measurements of components of conjugated quadratures of fields of reflected/scattered and transmitted/scattered beams by an object in interferometry.
  4. Hill,Henry Allen, Apparatus and method for joint measurement of fields of scattered/reflected or transmitted orthogonally polarized beams by an object in interferometry.
  5. Hill,Henry A., Apparatus and method for joint measurements of conjugated quadratures of fields of reflected/scattered and transmitted beams by an object in interferometry.
  6. Hill,Henry Allen, Apparatus and method for measurement of critical dimensions of features and detection of defects in UV, VUV, and EUV lithography masks.
  7. Hill,Henry Allen, Apparatus and method for measurement of fields of backscattered and forward scattered/reflected beams by an object in interferometry.
  8. Atiya, Yossef; Verker, Tal, Apparatus and method for measuring surface topography optically.
  9. Hill,Henry Allen, Apparatus and methods for overlay, alignment mark, and critical dimension metrologies based on optical interferometry.
  10. Kopelman, Avi; Sambu, Shiva; Sterental, Rene M.; Kuo, Eric; de Alencar Casa, Mauricio, Arch expanding appliance.
  11. Georgiev, Todor G.; Lumsdaine, Andrew, Blended rendering of focused plenoptic camera data.
  12. Hill,Henry Allen, Catoptric and catadioptric imaging systems with adaptive catoptric surfaces.
  13. Hill,Henry A., Catoptric and catadioptric imaging systems with pellicle and aperture-array beam-splitters and non-adaptive and adaptive catoptric surfaces.
  14. Hill,Henry A., Catoptric and catadioptric imaging systems with pellicle and aperture-array beam-splitters and non-adaptive and adaptive catoptric surfaces.
  15. Hill,Henry Allen, Catoptric imaging systems comprising pellicle and/or aperture-array beam-splitters and non-adaptive and/or adaptive catoptric surfaces.
  16. Atiya, Yossef; Verker, Tal, Chromatic confocal system.
  17. Hill,Henry Allen, Compensation for effects of mismatch in indices of refraction at a substrate-medium interface in non-confocal, confocal, and interferometric confocal microscopy.
  18. Tanaami Takeo,JPX, Confocal microscopic equipment.
  19. Azuma, Takuya, Confocal optical scanner.
  20. Sussman Michael, Depth from focal gradient analysis using object texture removal by albedo normalization.
  21. Sissom Bradley ; Sussman Michael, Depth-from-defocus optical apparatus with invariance to surface reflectance properties.
  22. Aaron S. Wallack, Determining a depth.
  23. Wallack Aaron S., Determining a depth.
  24. Wallack Aaron S., Determining a depth.
  25. Shroff, Sapna A.; Berkner, Kathrin; Meng, Lingfei, Estimation of metrics using a plenoptic imaging system.
  26. Georgiev, Todor G.; Lumsdaine, Andrew, Focused plenoptic camera employing different apertures or filtering at different microlenses.
  27. Georgiev, Todor G.; Lumsdaine, Andrew, Focused plenoptic camera employing different apertures or filtering at different microlenses.
  28. Shroff, Sapna A.; Berkner, Kathrin; Stork, David G., Focusing and focus metrics for a plenoptic imaging system.
  29. Lumsdaine, Andrew; Willcock, Jeremiah; Zhou, Yuduo; Lin, Lili, Frequency domain processing techniques for plenoptic images.
  30. Morgott, Stefan; Reill, Joachim; Brick, Peter, Holographic foil and method for producing same.
  31. Hill,Henry Allen, Interferometric confocal microscopy incorporating a pinhole array beam-splitter.
  32. Elbaz, Gilad; Lampert, Erez; Atiya, Yossef; Kopelman, Avi; Saphier, Ofer; Moshe, Maayan; Ayal, Shai, Intraoral scanner with dental diagnostics capabilities.
  33. Hill,Henry Allen, Leaky guided wave modes used in interferometric confocal microscopy to measure properties of trenches.
  34. Georgiev, Todor G., Light field microscope with lenslet array.
  35. Krause Andrew W. ; Liang Minhua ; Stehr Robert L., Light modulated confocal optical instruments and method.
  36. Hill,Henry Allen, Longitudinal differential interferometric confocal microscopy.
  37. Intwala, Chintan; Georgiev, Todor G., Managing artifacts in frequency domain processing of light-field images.
  38. Almogy, Gilad, Maskless photon-electron spot-grid array printer.
  39. Babacan, Sevket Derin; Georgiev, Todor G., Method and apparatus for block-based compression of light-field images.
  40. Babacan, Sevket Derin; Georgiev, Todor G., Method and apparatus for block-based compression of light-field images.
  41. Hill,Henry Allen, Method and apparatus for dark field interferometric confocal microscopy.
  42. Hill,Henry Allen, Method and apparatus for enhanced resolution of high spatial frequency components of images using standing wave beams in non-interferometric and interferometric microscopy.
  43. Lichtman Jeff W. ; Conchello Jose-Angel, Method and apparatus for generating a three-dimensional topographical image of a microscopic specimen.
  44. Intwala, Chintan; Georgiev, Todor G., Method and apparatus for managing artifacts in frequency domain processing of light-field images.
  45. Georgiev, Todor G.; Intwala, Chintan, Method and apparatus for radiance capture by multiplexing in the frequency domain.
  46. Georgiev, Todor G.; Intwala, Chintan, Method and apparatus for radiance capture by multiplexing in the frequency domain.
  47. Hurley, Neil Francis; Zhang, Tuanfeng, Method for characterizing a geological formation traversed by a borehole.
  48. Hill,Henry Allen, Method for constructing a catadioptric lens system.
  49. Zhang, Tuanfeng; Hurley, Neil Francis; Zhao, Weishu, Method to generate numerical pseudocores using borehole images, digital rock samples, and multi-point statistics.
  50. Hurley, Neil Francis; Zhang, Tuanfeng; Xu, Guangping; Xu, Lili; Slim, Mirna, Method to quantify discrete pore shapes, volumes, and surface areas using confocal profilometry.
  51. Georgiev, Todor G.; Chunev, Georgi N., Methods and apparatus for calibrating focused plenoptic camera data.
  52. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for full-resolution light-field capture and rendering.
  53. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for full-resolution light-field capture and rendering.
  54. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for full-resolution light-field capture and rendering.
  55. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for full-resolution light-field capture and rendering.
  56. Georgiev, Todor G., Methods and apparatus for light-field imaging.
  57. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for reducing plenoptic camera artifacts.
  58. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for reducing plenoptic camera artifacts.
  59. Georgiev, Todor G.; Chunev, Georgi N., Methods and apparatus for rendering focused plenoptic camera data using super-resolved demosaicing.
  60. Georgiev, Todor G.; Chunev, Georgi N., Methods and apparatus for rendering output images with simulated artistic effects from focused plenoptic camera data.
  61. Georgiev, Todor G.; Lumsdaine, Andrew, Methods and apparatus for rich image capture with focused plenoptic cameras.
  62. Georgiev, Todor G.; Chunev, Georgi N.; Lumsdaine, Andrew, Methods and apparatus for super-resolution in integral photography.
  63. Georgiev, Todor G.; Lumsdaine, Andrew, Methods, apparatus, and computer-readable storage media for depth-based rendering of focused plenoptic camera data.
  64. Shroff, Sapna A.; Berkner, Kathrin; Stork, David G., Metrics for designing a plenoptic imaging system.
  65. Johnson Kenneth C., Microlens scanner for microlithography and wide-field confocal microscopy.
  66. Yamanaka Atsushi,JPX, Optical device and head-mounted display using said optical device.
  67. Yamanaka Atsushi,JPX, Optical device and head-mounted display using said optical device.
  68. Benner, Ulrich; Mayer, Elmar, Optical position measuring device.
  69. Yamagata, Masaoki; Nemoto, Kentaro, Optical probe.
  70. Yamagata, Masaoki; Nemoto, Kentaro, Optical probe.
  71. Almogy, Gilad, Optical spot grid array printer.
  72. Borovinskih, Artem; Derakhshan, Mitra; Koppers, Carina; Meyer, Eric; Tolstaya, Ekaterina; Brailov, Yury, Photograph-based assessment of dental treatments and procedures.
  73. Georgiev, Todor G., Plenoptic camera.
  74. Georgiev, Todor G., Plenoptic camera with large depth of field.
  75. Atiya, Yossef; Verker, Tal, Probe head and apparatus for intraoral confocal imaging using polarization-retarding coatings.
  76. Atiya, Yossef; Verker, Tal, Probe head and apparatus for intraoral confocal imaging using polarization-retarding coatings using a second sidewall.
  77. Georgiev, Todor G.; Intwala, Chintan; Babacan, Sevket Derin, Radiance processing by demultiplexing in the frequency domain.
  78. Grodzins, Lee; Rothschild, Peter J.; Adams, William L., Radiation threat detection.
  79. Grodzins, Lee; Rothschild, Peter; Adams, William L., Radiation threat detection.
  80. Shroff, Sapna A.; Berkner, Kathrin; Meng, Lingfei, Resolution-enhanced plenoptic imaging system.
  81. Oldham, Mark F.; Young, Eugene F., Scanning system and method for scanning a plurality of samples.
  82. Jung, Yun Ho, Sequential lateral solidification device and method of crystallizing silicon using the same.
  83. Shroff, Sapna A.; Berkner, Kathrin; Meng, Lingfei, Spatial reconstruction of plenoptic images.
  84. Almogy, Gilad; Reches, Oren, Spot grid array electron imaging system.
  85. Young, Scott; Hill, Andy, Stereo extended depth of focus.
  86. Hill,Henry Allen, Sub-nanometer overlay, critical dimension, and lithography tool projection optic metrology systems based on measurement of exposure induced changes in photoresist on wafers.
  87. Georgiev, Todor G.; Lumsdaine, Andrew, Super-resolution with the focused plenoptic camera.
  88. Tanaka, Haruo; Sai, Hironobu, Surface light emitting devices.
  89. Sussman Michael, System for obtaining a uniform illumination reflectance image during periodic structured illumination.
  90. Berestka, John; Berestka, Noah John, Systems and methods for analyzing the eye.
  91. Georgiev, Todor G., Thin plenoptic cameras using microspheres.
  92. Georgiev, Todor G., Thin plenoptic cameras using solid immersion lenses.
  93. Anderson R. Rox ; Webb Robert H. ; Rajadhyaksha Milind, Three-dimensional scanning confocal laser microscope.
  94. Atiya, Yossef; Verker, Tal, VCSEL based low coherence emitter for confocal 3D scanner.
  95. Atiya, Yossef; Verker, Tal, VCSEL based low coherence emitter for confocal 3D scanner.
  96. Sussman Michael, Warping of focal images to correct correspondence error.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로