$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

특허 상세정보

Remote piloted vehicle powered by beamed radiation

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) B64C-013/20    B64D-035/00   
미국특허분류(USC) 244/190; 244/060; 244/062
출원번호 US-0558999 (2000-04-25)
발명자 / 주소
출원인 / 주소
대리인 / 주소
    Donald G. Peck
인용정보 피인용 횟수 : 26  인용 특허 : 6
초록

An airborne remote piloted vehicle does not require onboard fuel to greatly extend its endurance and payload capability. Photovoltaic cells are provided on substantially the entire bottom surface of the RPV to receive high intensity radiation beamed up from a ground station. The photovoltaic cells can be made responsive to visible light, infrared light and/or ultraviolet light emitted from lasers that direct narrow, high energy beams, or other directable narrow beams of other wavelengths of high energy radiation, including but not limited to microwaves. ...

대표
청구항

1. A remote piloted vehicle comprising:a saucer-shaped fuselage having at least one traverse duct extending from top to bottom for channeling prop blast downward; a propeller disposed in said duct; an electric motor unit coupled to said propeller to drive said propeller and generate said prop blast, said prop blast permiting transport to and hovering at a remote station; and a plurality of photovoltaic cells disposed on a bottom side of said saucer-shaped fuselage to receive beamed radiation and to generate electrical power from said beamed radiation, sa...

이 특허를 인용한 특허 피인용횟수: 26

  1. Nugent, Jr., Thomas J.; Bashford, David; Kare, Jordin T.. Aerial platform powered via an optical transmission element. USP2017109800091.
  2. Johnson,Samuel A.. Aerial robot. USP2009037510142.
  3. Johnson, Samuel Alan; Burkard, William Dennis; Mimlitch, III, Robert H.; Mimlitch, Jr., Robert Henry; Norman, David Anthony. Aerial robot with dispensable conductive filament. USP2009127631834.
  4. Martin, Hugh; Cumpston, Rusty. Lighting infrastructure and revenue model. USP2018059965813.
  5. Barnard, Chris. Method and apparatus for measuring illumination characteristics of a luminaire. USP2017089746370.
  6. Berrios, Jesus; Cox, Eric L.; Porter, Terry J.. Methods and apparatus for beaming power. USP2003036534705.
  7. Tillotson, Brian J.. Methods and systems for beam powered propulsion. USP2014118876061.
  8. Cumpston, Rusty; Martin, Hugh. Networked lighting infrastructure for sensing applications. USP2016069374870.
  9. Cumpston, Rusty; Martin, Hugh. Networked lighting infrastructure for sensing applications. USP2017079699873.
  10. Tillotson, Brian J.. Photovoltaic receiver for beamed power. USP2014058735712.
  11. Ryhorchuk, Kent W.; Sachs, Christopher David. Security and data privacy for lighting sensory networks. USP2018059959413.
  12. Ryhorchuk, Kent W.; Sachs, Christopher David. Security and data privacy for lighting sensory networks. USP2017029582671.
  13. Ryhorchuk, Kent W.. Sensor nodes with multicast transmissions in lighting sensory network. USP2016099456293.
  14. Ryhorchuk, Kent W.. Sensor nodes with multicast transmissions in lighting sensory network. USP20181210158718.
  15. Bennett,Charles L.. Solar thermal aircraft. USP2007097270295.
  16. Mohamadi, Farrokh. Standoff detection of motion and concealed unexploded ordnance (UXO). USP2013118573529.
  17. Forenza, Antonio; Perlman, Stephen G.. System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client. USP2017119819403.
  18. Forenza, Antonio; Perlman, Stephen G.. System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters. USP2017119826537.
  19. Barnard, Chris. System and method for planning and monitoring a light sensory network. USP2018049933297.
  20. Perlman, Stephen G.; Forenza, Antonio. System and method for powering an aircraft using radio frequency signals and feedback. USP2012118307922.
  21. Perlman, Stephen G.; Forenza, Antonio. System and method for powering vehicle using radio frequency signals and feedback. USP2013068469122.
  22. Forenza, Antonio; Perlman, Stephen G.. Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology. USP2018039923657.
  23. Forenza, Antonio; Perlman, Stephen G.. Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology. USP2018059973246.
  24. Tanielian, Minas. Virtually attached node. USP2013098536501.
  25. Tuominen,Juha; H채m채l채inen,Kai. Wireless power and data transmission. USP2006077078666.
  26. Hiebl, Manfred; Pongratz, Hans Wolfgang. Wireless remote energy supply for unmanned aerial vehicles. USP2017129837859.