$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Chemically synthesized and assembled electronics devices 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • H01L-029/06
출원번호 US-0282048 (1999-03-29)
발명자 / 주소
  • James R. Heath
  • R. Stanley Williams
  • Philip J. Kuekes
출원인 / 주소
  • Hewlett-Packard Company
인용정보 피인용 횟수 : 135  인용 특허 : 9

초록

A route to the fabrication of electronic devices is provided, in which the devices consist of two crossed wires sandwiching an electrically addressable molecular species. The approach is extremely simple and inexpensive to implement, and scales from wire dimensions of several micrometers down to nan

대표청구항

1. A crossed-wire device comprising a pair of crossed wires that form a junction where one wire crosses another at an angle other than zero degrees and at least one connector species connecting said pair of crossed wires in said junction, said junction having a functional dimension in nanometers, wh

이 특허에 인용된 특허 (9)

  1. Culbertson W. Bruce ; Kuekes Philip J., Apparatus and method for configuring a reconfigurable electronic system having defective resources.
  2. Potember Richard S. (Baltimore MD) Poehler ; Jr. Theodore O. (Baltimore MD) Cowan Dwaine O. (Towson MD), Current controlled bistable electrical organic thin film switching device.
  3. Weinberger Arnold (Poughkeepsie NY), Logic array with multiple readout tables.
  4. Gallagher William Joseph (Ardsley NY) Kaufman James Harvey (San Jose CA) Parkin Stuart Stephen Papworth (San Jose CA) Scheuerlein Roy Edwin (Cupertino CA), Magnetic memory array using magnetic tunnel junction devices in the memory cells.
  5. Snider Gregory S. ; Kuekes Philip J., Network connection scheme.
  6. Blahut Donald E. (Holmdel NJ) Cooper ; Jr. James A. (Warren NJ), Programable logic array.
  7. Nagasubramanian Ganesan (LaCrescenta CA) DiStefano Salvador (Alhambra CA) Moacanin Jovan (Los Angeles CA), Reversible non-volatile switch based on a TCNQ charge transfer complex.
  8. Reed Mark A. (New Haven CT), Sub-nanoscale electronic systems and devices.
  9. Snider Gregory S. (Mountain View CA), Tileable gate array cell for programmable logic devices and gate array having tiled gate array cells.

이 특허를 인용한 특허 (135)

  1. Bulovic, Vladimir; Mandell, Aaron; Perlman, Andrew, Addressable and electrically reversible memory switch.
  2. Vadi,Vasisht Mantra, Adjustable global tap voltage to improve memory cell yield.
  3. Dickson, Robert M.; Lyon, Louis A., Apparatus and method of optical transfer and control in plasmon supporting metal nanostructures.
  4. Trimberger,Steven M.; Bapat,Shekhar; Wells,Robert W.; Patrie,Robert D.; Lai,Andrew W., Application-specific methods for testing molectronic or nanoscale devices.
  5. Bapat,Shekhar; Wells,Robert W.; Patrie,Robert D.; Lai,Andrew W., Application-specific methods useful for testing look up tables in programmable logic devices.
  6. Snider,Gregory Stuart, Architecture and methods for computing with reconfigurable resistor crossbars.
  7. Ghozeil,Adam L; Stasiak,James; Peters,Kevin; Kawamoto,Galen H., Array of nanoscopic mosfet transistors and fabrication methods.
  8. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large cross-point memory arrays with resistive memory elements.
  9. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large cross-point memory arrays with resistive memory elements.
  10. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large memory arrays with resistive memory elements.
  11. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large memory arrays with resistive memory elements.
  12. Siau, Chang Hua, Array voltage regulating technique to enable data operations on large memory arrays with resistive memory elements.
  13. Tian, Bozhi; Xie, Ping; Kempa, Thomas J.; Lieber, Charles M.; Cohen-Karni, Itzhaq; Qing, Quan; Duan, Xiaojie, Bent nanowires and related probing of species.
  14. Zhou,Zhang Lin; Chen,Yong; Zhang,Xiao An, Bottom electrode chemically-bonded Langmuir-Blodgett films via photolabile groups.
  15. Mayer, Theresa S.; Keating, Christine D.; Li, Mingwei; Morrow, Thomas; Kim, Jaekyun, Bottom-up assembly of structures on a substrate.
  16. Lieber, Charles M.; Tian, Bozhi; Jiang, Xiaocheng, Branched nanoscale wires.
  17. Johnson,Bradley R.; Schweiger,Michael J.; MacIsaac,Brett D.; Sundaram,S. Kamakshi, Chalcogenide glass nanostructures.
  18. Heath, James R.; Williams, R. Stanley; Kuekes, Philip J., Chemically synthesized and assembled electronic devices.
  19. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Guo,Frank, Circuit arrays having cells with combinations of transistors and nanotube switching elements.
  20. Snider, Gregory S.; Kuekes, Philip J.; Williams, R. Stanley, Configurable molecular switch array.
  21. Stewart, Duncan; Ohlberg, Douglas; Williams, R. Stanley; Kuekes, Philip J., Control layer for a nanoscale electronic switching device.
  22. Kuekes, Philip J., Controlled input molecular crossbar latch.
  23. Beck, Patricia A.; Ohlberg, Douglas; Stewart, Duncan; Li, Zhiyong, Custom electrodes for molecular memory and logic devices.
  24. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices.
  25. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  26. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  27. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  28. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  29. Shepard, Daniel R., Dual-addressed rectifier storage device.
  30. McCreery,Richard L., Electronic junction devices featuring redox electrodes.
  31. Bertin, Claude L.; Meinhold, Mitchell; Konsek, Steven L.; Rueckes, Thomas; Guo, Frank, Field effect device having a channel of nanofabric and methods of making same.
  32. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Field effect devices having a drain controlled via a nanotube switching element.
  33. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Field effect devices having a gate controlled via a nanotube switching element.
  34. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Field effect devices having a gate controlled via a nanotube switching element.
  35. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Guo,Frank, Field effect devices having a source controlled via a nanotube switching element.
  36. Kern,Klaus; Burghard,Marko; Cui,Jingbiao, Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell.
  37. Mandell, Aaron; Perlman, Andrew, Floating gate memory device using composite molecular material.
  38. Yang,Peidong; Law,Matthew; He,Rongrui; Fan,Rong; Kim,Franklin, Functional bimorph composite nanotapes and methods of fabrication.
  39. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  40. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  41. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  42. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  43. Siau, Chang Hua; Bateman, Bruce Lynn, Global bit line pre-charge circuit that compensates for process, operating voltage, and temperature variations.
  44. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  45. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  46. Bertin, Claude L.; Meinhold, Mitchell; Konsek, Steven L.; Rueckes, Thomas; Guo, Frank, Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same.
  47. Mayer, Theresa S.; Keating, Christine D., Integrated nanomechanical sensor array chips.
  48. Siau, Chang Hua; Chevallier, Christophe; Rinerson, Darrell; Lim, Seow Fong; Namala, Sri, Local bit lines and methods of selecting the same to access memory elements in cross-point arrays.
  49. Siau, Chang Hua; Chevallier, Christophe; Rinerson, Darrell; Lim, Seow Fong; Namala, Sri Rama, Local bit lines and methods of selecting the same to access memory elements in cross-point arrays.
  50. Siau, Chang Hua; Chevallier, Christophe; Rinerson, Darrell; Lim, Seow Fong; Namala, Sri Rama, Local bit lines and methods of selecting the same to access memory elements in cross-point arrays.
  51. Shepard, Daniel R., Low cost high density rectifier matrix memory.
  52. Shepard, Daniel R., Low cost high density rectifier matrix memory.
  53. Chevallier, Christophe; Namala, Sri Rama; Siau, Chang Hua; Eggleston, David, Memory architectures and techniques to enhance throughput for cross-point arrays.
  54. Siau, Chang Hua; Bateman, Bruce, Memory array with local bitlines and local-to-global bitline pass gates and gain stages.
  55. Bertin, Claude L.; Guo, Frank; Rueckes, Thomas; Konsek, Steven L.; Meinhold, Mitchell; Strasburg, Max; Sivarajan, Ramesh; Huang, X. M. Henry, Memory arrays using nanotube articles with reprogrammable resistance.
  56. Krieger, Juri H.; Yudanov, Nikolai, Memory device.
  57. Krieger, Juri H.; Yudanov, Nikolai, Memory device.
  58. Krieger, Juri H.; Yudanov, Nikolai, Memory device.
  59. Krieger, Juri H.; Yudanoy, Nikolai, Memory device.
  60. Krieger, Juri H.; Yudanov, N. F., Memory device with a self-assembled polymer film and method of making the same.
  61. Krieger, Juri H.; Yudanov, Nikolai, Memory device with active and passive layers.
  62. Krieger, Juri H.; Yudanov, Nikolai, Memory device with active passive layers.
  63. Zhang,Sean X.; Zhou,Zhang lin; Chen,Yong, Method for chemically bonding Langmuir-Blodgett films to substrates.
  64. Heath,James R.; Luo,Yi; Beckman,Rob, Method for making a system for selecting one wire from a plurality of wires.
  65. Zhang, Sean X.; Leung, Sui-Hing, Method of forming a self-assembled molecular layer.
  66. Kamins, Theodore I., Method of forming smooth polycrystalline silicon electrodes for molecular electronic devices.
  67. Kamins,Theodore I., Method of forming smooth polycrystalline silicon electrodes for molecular electronic devices.
  68. Tong, William M.; Stewart, Duncan; Williams, R. Stanley; Sharma, Manish; Li, Zhiyong; Gibson, Gary A., Method of interconnect formation using focused beams.
  69. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Method of making non-volatile field effect devices and arrays of same.
  70. Freer, Erik; Hamilton, James M.; Stumbo, David P.; Komiya, Kenji; Shibata, Akihide, Methods and systems for electric field deposition of nanowires and other devices.
  71. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  72. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  73. Goldstein,Seth Copen; Rosewater,Daniel L., Methods of chemically assembled electronic nanotechnology circuit fabrication.
  74. Ghozeil, Adam L; Stasiak, James; Peters, Kevin; Kawamoto, Galen H., Methods of fomring array of nanoscopic MOSFET transistors.
  75. Wells,Robert W.; Patrie,Robert D.; DeBaets,Andrew J., Methods of utilizing programmable logic devices having localized defects in application-specific products.
  76. Zhang, Sean X.; Chen, Yong, Molecular layer and method of forming the same.
  77. Zhang,Sean X.; Chen,Yong, Molecular layer and method of forming the same.
  78. Krieger, Juri H.; Yudanov, Nikolay F., Molecular memory cell.
  79. Krieger,Juri H; Yudanov,Nicolay F, Molecular memory cell.
  80. Bulovic, Vladimir; Mandell, Aaron; Perlman, Andrew, Molecular memory device.
  81. Goldstein, Seth Copen; Rosewater, Daniel L., Molecular scale latch and associated clocking scheme to provide gain, memory and I/O isolation.
  82. Eaton, Jr., James R.; Kuekes, Philip John, Molecular wire crossbar flash memory.
  83. Wu, Jian; Meyer, Rene, Multi-layered conductive metal oxide structures and methods for facilitating enhanced performance characteristics of two-terminal memory cells.
  84. Wu, Jian; Meyer, Rene, Multi-layered conductive metal oxide structures and methods for facilitating enhanced performance characteristics of two-terminal memory cells.
  85. Wu, Jian; Meyer, Rene, Multi-layered conductive metal oxide structures and methods for facilitating enhanced performance characteristics of two-terminal memory cells.
  86. Siau, Chang Hua, Multilayer cross-point memory array having reduced disturb susceptibility.
  87. Shepard, Daniel R., Nano-vacuum-tubes and their application in storage devices.
  88. Stasiak,James; Peters,Kevin F; Wu,Jennifer; Kornilovich,Pavel; Chen,Yong, Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making.
  89. Stasiak,James; Peters,Kevin F; Wu,Jennifer; Kornilovich,Pavel; Chen,Yong, Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making.
  90. Lieber,Charles M.; Duan,Xiangfeng; Huang,Yu; Agarwal,Ritesh, Nanoscale coherent optical components.
  91. Kuekes, Philip J., Nanoscale multiplexer.
  92. Lieber, Charles M.; Patolsky, Fernando; Zheng, Gengfeng, Nanoscale sensors.
  93. Lieber, Charles M.; Wu, Yue; Yan, Hao, Nanoscale wire-based data storage.
  94. Lieber,Charles M.; Duan,Xiangfeng; Cui,Yi; Huang,Yu; Gudiksen,Mark; Lauhon,Lincoln J.; Wang,Jianfang; Park,Hongkun; Wei,Qingqiao; Liang,Wenjie; Smith,David C.; Wang,Deli; Zhong,Zhaohui, Nanoscale wires and related devices.
  95. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  96. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  97. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenji, Nanosensors.
  98. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  99. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  100. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  101. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  102. Islam, M. Saif; Chen, Yong; Wang, Shih-Yuan; Williams, R. Stanley, Nanowire device with (111) vertical sidewalls and method of fabrication.
  103. Lu, Wei; Xiang, Jie; Wu, Yue; Timko, Brian P.; Yan, Hao; Lieber, Charles M., Nanowire heterostructures.
  104. Shepard, Daniel R., Non-linear conductor memory.
  105. Bertin,Claude L.; Rueckes,Thomas; Berg,John E., Non-volatile electromechanical field effect devices and circuits using same and methods of forming same.
  106. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernhard; Brock,Darren K.; Jaiprakash,Venkatachalam C., Non-volatile electromechanical field effect devices and circuits using same and methods of forming same.
  107. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernhard; Brock,Darren K.; Jaiprakash,Venkatachalam C., Non-volatile electromechanical field effect devices and circuits using same and methods of forming same.
  108. Stewart,Duncan R.; Beck,Patricia A.; Ohlberg,Douglas A., Non-volatile programmable impedance nanoscale devices.
  109. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernhard; Brock,Darren K.; Jaiprakash,Venkatachalam C., One-time programmable, non-volatile field effect devices and methods of making same.
  110. Kingsborough,Richard P.; Sokolik,Igor, Organic thin film Zener diodes.
  111. Wang,Shih Yuan; Islam,M. Saif, Patterning nanoline arrays with spatially varying pitch.
  112. Biscarini, Fabio; Cavallini, Massimiliano; Leigh, David A.; Zerbetto, Francesco, Process for obtaining spatially-organised nanostructures on thin films.
  113. Trimberger,Stephen M., Programmable logic device suitable for implementation in molecular electronics.
  114. Hogg, Tad, Reducing variation in randomized nanoscale circuit connections.
  115. Bulovic, Vladimir; Mandell, Aaron; Perlman, Andrew, Reversible field-programmable electric interconnects.
  116. Bulovic,Vladimir; Mandell,Aaron; Perlman,Andrew, Reversible field-programmable electric interconnects.
  117. Shepard, Daniel R., SCR matrix storage device.
  118. Shepard,Daniel Robert, SCR matrix storage device.
  119. Wang, Zhong L.; Pan, Zhengwei; Dai, Zurong, Semiconducting oxide nanostructures.
  120. Shepard, Daniel R., Sequencing decoder circuit.
  121. Mattis,Daniel C., Signal amplification using architectures of nanodots and connecting channels.
  122. Bratovski, Alexandre; Zhang, Xiao-An; Williams, R. Stanley, Stabilization of configurable molecular mechanical devices.
  123. Mouttet, Blaise Laurent, Symmetrical programmable memresistor crossbar structure.
  124. Rinerson, Darrell; Chevallier, Christophe J.; Kinney, Wayne; Lambertson, Roy; Sanchez, Jr., John E.; Schloss, Lawrence; Swab, Philip; Ward, Edmond, Two-terminal reversibly switchable memory device.
  125. Rinerson, Darrell; Chevallier, Christophe J.; Kinney, Wayne; Lambertson, Roy; Sanchez, Jr., John E.; Schloss, Lawrence; Swab, Philip; Ward, Edmond, Two-terminal reversibly switchable memory device.
  126. Rinerson, Darrell; Chevallier, Christophe J.; Kinney, Wayne; Lambertson, Roy; Sanchez, Jr., John E.; Schloss, Lawrence; Swab, Philip; Ward, Edmond, Two-terminal reversibly switchable memory device.
  127. Yoshioka,Hideki; Watanabe,Mutsumi; Yuasa,Mayumi; Nishiura,Masahide, Ultrasonic picture processing method and ultrasonic picture processing apparatus.
  128. Bateman, Bruce, Vertical cross point arrays for ultra high density memory applications.
  129. Bateman, Bruce Lynn, Vertical cross point arrays for ultra high density memory applications.
  130. Bateman, Bruce Lynn, Vertical cross-point arrays for ultra-high-density memory applications.
  131. Choi, Won-bong; Lee, Jo-won; Lee, Young-hee, Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof.
  132. Choi, Won-bong; Lee, Jo-won; Lee, Young-hee, Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof.
  133. Choi, Won-bong; Lee, Jo-won; Lee, Young-hee, Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof.
  134. Choi, Won-bong; Lee, Jo-won; Lee, Young-hee, Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof.
  135. Ratna, Banahalli; Blum, Amy; Soto, Carissa; Brower, Tina; Pollack, Steve, Virus as a scaffold for hierarchical self-assembly of functional nanoscale devices.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로