$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Carbon nanotube devices 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • G01N-027/00
출원번호 US-0574393 (2000-05-19)
발명자 / 주소
  • Dai, Hongjie
  • Kong, Jing
출원인 / 주소
  • The Board of Trustees of the Leland Stanford Junior University
대리인 / 주소
    Crawford Maunn PLLC
인용정보 피인용 횟수 : 238  인용 특허 : 15

초록

This invention provides an assembly of novel nanotube devices that can be employed in a variety of applications. In particular, the nanotube devices of the present invention provide a new class of versatile chemical and biological sensors. The present invention describes methods for growing individu

대표청구항

This invention provides an assembly of novel nanotube devices that can be employed in a variety of applications. In particular, the nanotube devices of the present invention provide a new class of versatile chemical and biological sensors. The present invention describes methods for growing individu

이 특허에 인용된 특허 (15)

  1. Cheung Jeffrey T. (Thousand Oaks CA), Ambient temperature gas sensor.
  2. Park Je Kyun (Seoul KRX) Lee Hee Jin (Kwangmyung-si KRX), Breath alcohol analyzer using a biosensor.
  3. Xu Xueping ; Beetz Charles P. ; Brandes George R. ; Boerstler Robert W. ; Steinbeck John W., Carbon fiber-based field emission devices.
  4. Glaunsinger William ; Sorensen Ian ; Bao Qingcheng ; McKelvy Michael J., Chemical switch for detection of chemical components.
  5. Robillard Jean J. (El Paso TX), Fiber optics gas sensor.
  6. Debe Mark K., Field emission device having nanostructured emitters.
  7. Nosaka Toshikazu,JPX ; Sakurai Yoshiaki,JPX ; Natsukawa Kazuki,JPX ; Yotsuya Tsutomu,JPX ; Kawabata Shunsaku,JPX ; Nishida Katsumi,JPX ; Nishikawa Kazuhiro,JPX ; Mori Kiyohiro,JPX ; Kiyama Hiromi,JPX, Gas sensor.
  8. Seth Michael,DEX ; Fleischer Maximilian,DEX ; Meixner Hans,DEX, Gas sensor and method for manufacturing the same.
  9. Iijima Sumio,JPX, Graphite filaments having tubular structure and method of forming the same.
  10. Massey Richard J. ; Martin Mark T. ; Dong Liwen ; Lu Ming ; Fischer Alan ; Jameison Fabian ; Liang Pam ; Hoch Robert ; Leland Jonathan K., Graphitic nanotubes in luminescence assays.
  11. Murphy Randall B. ; Wilson Stephen R. ; Lu Quing, Multi-substituted fullerenes and methods for their preparation and characterization.
  12. Rodriguez Nelly M. (State College PA) Baker R. Terry K. (State College PA), Process for separating components from gaseous streams.
  13. Hager Harold E. (King County WA), Sensing device for detecting the presence of a gas contained in a mixture thereof.
  14. Heinze Jrgen (Freiburg DEX) Synowczyk Andreas W. (Bad Krozingen DEX), Sensor for detecting analytes in a fluid medium.
  15. Rodriguez Nelly M. (State College PA) Baker R. Terry K. (State College PA), Storage of hydrogen in layered nanostructures.

이 특허를 인용한 특허 (238)

  1. Bertin, Claude L.; Cleveland, Lee, 1-R resistive change element arrays using resistive reference elements.
  2. Chen, Junhong; Lu, Ganhua, Ambient-temperature gas sensor.
  3. Briman, Mikhail; Bryant, Craig; Chang, Ying-Lan; Gabriel, Jean-Christophe P.; Gandhi, Shirpal C.; Johnson, Bradley N; Ouborg, Willem-Jan; Passmore, John Loren; Ramakrishnan, Kastooriranganathan; Skarupo, Sergei; Star, Alexander; Valcke, Christian, Ammonia nanosensors, and environmental control system.
  4. Rueckes, Thomas; Sivarajan, Ramesh; Sen, Rahul, Anisotropic nanotube fabric layers and films and methods of forming same.
  5. Rueckes, Thomas; Sivarajan, Ramesh; Sen, Rahul, Anisotropic nanotube fabric layers and films and methods of forming same.
  6. Brahma, Avra; Nanda, Jagjit, Approach for controlling particulate matter in an engine.
  7. Ghenciu, Eliodor G.; Han, Tzong-Ru Terry; Sivarajan, Ramesh; Rueckes, Thomas; Sen, Rahul; Segal, Brent M.; Ward, Jonathan W., Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof.
  8. Sivarajan, Ramesh; Rueckes, Thomas; Sen, Rahul; Segal, Brent M.; Ghenciu, Eliodor G.; Ward, Jonathan W.; Han, Tzong-Ru T., Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof.
  9. Tian, Bozhi; Xie, Ping; Kempa, Thomas J.; Lieber, Charles M.; Cohen-Karni, Itzhaq; Qing, Quan; Duan, Xiaojie, Bent nanowires and related probing of species.
  10. Kim, Yong Hyup; Park, Young June; Ko, Jung Woo; Kang, Tae June; Kim, Seok Hyang; Lim, Jae Heung, Biomolecular sensor with plural metal plates and manufacturing method thereof.
  11. Kim, Jae-Ho; Choi, Sung-Wook; Lee, Jae-Hyeok; Nam, Gwang Hyeon, Biosensor based on carbon nanotube-electric field effect transistor and method for producing the same.
  12. Lieber, Charles M.; Tian, Bozhi; Jiang, Xiaocheng, Branched nanoscale wires.
  13. Pace, Salvatore J.; Man, Piu Francis; Patil, Ajeeta Pradip; Tan, Kah Fatt, CNT-based sensors: devices, processes and uses thereof.
  14. Snow, Eric S.; Perkins, F. Keith; Houser, Eric; Stepnowski, Stan V.; McGill, R. Andrew, Capacitive based sensing of molecular adsorbates on the surface of single wall nanotubes.
  15. Bertin, Claude L.; Cleavelin, C. Rinn; Rueckes, Thomas; Huang, X. M. Henry; Manning, H. Montgomery, Carbon based nonvolatile cross point memory incorporating carbon based diode select devices and MOSFET select devices for memory and logic applications.
  16. Haddon, Robert C.; Itkis, Mikhail E., Carbon nanotube based detector.
  17. Golovchenko, Jene A.; Peng, Haibing; Branton, Daniel, Carbon nanotube device fabrication.
  18. Golovchenko,Jene A.; Peng,Haibing, Carbon nanotube device fabrication.
  19. Dai,Hongjie; Kong,Jing, Carbon nanotube devices.
  20. Dai,Hongjie; Kong,Jing, Carbon nanotube devices.
  21. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  22. Maki, Hideyuki; Yamauchi, Youhei, Carbon nanotube light emitting device, light source, and photo coupler.
  23. Cho,Kyeongjae; Peng,Shu, Carbon nanotube sensors.
  24. Kim, Steve S.; Kuang, Zhifeng; Naik, Rajesh R.; Farmer, Barry L., Carbon nanotube sensors employing synthetic multifunctional peptides for surface functionalization.
  25. Branton, Daniel; Golovchenko, Jene A.; Garaj, Slaven; Vlassarev, Dimitar M.; Sadki, El-Hadi S., Carbon nanotube synthesis for nanopore devices.
  26. Bertin, Claude L.; Segal, Brent M.; Brock, Darren K., Carbon nanotube-based neural networks and methods of making and using same.
  27. Jordan,Jeffrey D.; Watkins,Anthony Neal; Oglesby,Donald M.; Ingram,JoAnne L., Carbon nanotube-based sensor and method for continually sensing changes in a structure.
  28. Smits,Jan M.; Kite,Marlen T.; Moore,Thomas C.; Wincheski,Russell A.; Ingram,JoAnne L.; Watkins,Anthony N.; Williams,Phillip A., Carbon nanotube-based sensor and method for detection of crack growth in a structure.
  29. Ward, Jonathan W.; Bertin, Claude L.; Segal, Brent M., Carbon nanotubes for the selective transfer of heat from electronics.
  30. Li, Jing; Meyyappan, Meyya, Chemical sensors using coated or doped carbon nanotube networks.
  31. Harvard, Qawi, Circuits for determining the resistive states of resistive change elements.
  32. Richardson-Burns, Sarah; Hendricks, Jeffrey L.; Martin, David C.; Sereno, Andrew; King, Zachary; Jan, Edward, Co-electrodeposited hydrogel-conducting polymer electrodes for biomedical applications.
  33. Li, Jing, Coated or doped carbon nanotube network sensors as affected by environmental parameters.
  34. Carlson, Robert E., Combinatorial artificial receptors including peptide building blocks.
  35. Carlson,Robert E., Combinatorial artificial receptors including tether building blocks.
  36. Carlson, Robert E., Combinatorial artificial receptors including tether building blocks on scaffolds.
  37. Manning, H. Montgomery; Rueckes, Thomas; Bertin, Claude L., Compact electrical switching devices with nanotube elements, and methods of making same.
  38. Dubin,Valery M., Composite carbon nanotube thermal interface device.
  39. Martin, David C.; Abidian, Mohammad Reza, Conducting polymer nanotube actuators for precisely controlled release of medicine and bioactive molecules.
  40. Chen, Junhong; Lu, Ganhua, Controlled decoration of carbon nanotubes with aerosol nanoparticles.
  41. Bertin, Claude L.; Cleavelin, C. Rinn; Rueckes, Thomas; Huang, X. M. Henry; Manning, H. Montgomery, Cross point arrays of 1-R nonvolatile resistive change memory cells using continuous nanotube fabrics.
  42. Bertin, Claude L.; Rosendale, Glen, DDR compatible memory circuit architecture for resistive change element arrays.
  43. Zhou, Chongwu; Thompson, Mark E.; Yang, Allen S.; Cote, Richard James, Detection of methylated DNA and DNA mutations.
  44. Li, Jing; Meyyappan, Meyya; Lu, Yijiang, Detection of presence of chemical precursors.
  45. Jaiprakash, Venkatachalam C.; Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Devices having horizontally-disposed nanofabric articles and methods of making the same.
  46. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having horizontally-disposed nanofabric articles and methods of making the same.
  47. Jaiprakash, Venkatachalam C.; Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  48. Jaiprakash,Venkatachalam C.; Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Devices having vertically-disposed nanofabric articles and methods of making the same.
  49. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices.
  50. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  51. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  52. Lieber, Charles M.; Cui, Yi; Duan, Xiangfeng; Huang, Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  53. Lieber,Charles M.; Cui,Yi; Duan,Xiangfeng; Huang,Yu, Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors, and fabricating such devices.
  54. Kim, Young W.; Rosendale, Glen, Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array.
  55. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., EEPROMS using carbon nanotubes for cell storage.
  56. Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang, Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof.
  57. Briman, Mikhail; Radtkey, Ray; Tu, Eugene; Valcke, Christian, Electrochemical nanosensors for biomolecule detection.
  58. Shigematsu, Taishi; Watanabe, Miho; Manabe, Chikara; Watanabe, Hiroyuki, Electrode for electrochemical measurement.
  59. Ward, Jonathan W.; Egerton, Elwood James; Sen, Rahul; Segal, Brent M., Electromagnetic and thermal sensors using carbon nanotubes and methods of making same.
  60. Segal, Brent M.; Brock, Darren K.; Rueckes, Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  61. Segal,Brent M.; Brock,Darren K.; Rueckes,Thomas, Electromechanical memory array using nanotube ribbons and method for making same.
  62. Corisis, David J.; Lee, Choon Kuan; Chong, Chin Hui, Electronic device assemblies including conductive vias having two or more conductive elements.
  63. Corisis, David J.; Lee, Choon Kuan; Chong, Chin Hui, Electronic device assemblies including conductive vias having two or more conductive elements.
  64. Corisis, David J.; Kuan, Lee Choon; Chong, Chin Hui, Electronic devices including conductive vias having two or more conductive elements for providing electrical communication between traces in different planes in a substrate, and accompanying methods.
  65. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Field effect devices having a drain controlled via a nanotube switching element.
  66. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Field effect devices having a gate controlled via a nanotube switching element.
  67. Armitage, N. Peter; Bradley, Keith; Gabriel, Jean-Christophe P.; Gruner, George, Flexible nanostructure electronic devices.
  68. Sen, Rahul; Sivarajan, Ramesh; Rueckes, Thomas; Segal, Brent M., High purity nanotube fabrics and films.
  69. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  70. Lieber, Charles M.; Gao, Xuan; Zheng, Gengfeng, High-sensitivity nanoscale wire sensors.
  71. Penner,Reginald Mark; Walter,Erich C.; Favier,Fred, Hydrogen gas sensor.
  72. Dai,Hongjie, Integrated nanotube sensor.
  73. Bertin, Claude L., Integrated three-dimensional semiconductor system comprising nonvolatile nanotube field effect transistors.
  74. Snow, Eric S.; Novak, Jamie P.; Campbell, Paul M., Interconnected networks of single-walled carbon nanotubes.
  75. Bertin, Claude L.; Rueckes, Thomas; Ward, Jonathan W.; Guo, Frank; Konsek, Steven L.; Meinhold, Mitchell, Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements.
  76. Ward, Jonathan W.; Meinhold, Mitchell; Bertin, Claude L.; Schlatka, Benjamin; Segal, Brent M.; Ruckes, Thomas, Light emitters using nanotubes and methods of making same.
  77. Kocab, J. Thomas; Bengtson, Thomas R.; Hosic, Sanjin; Sen, Rahul; Smith, Billy; Roberts, David A.; Sites, Peter, Low defect nanotube application solutions and fabrics and methods for making same.
  78. Radtkey, Ray; Joshi, Kanchan; Johnson, Bradley N.; Chang, Ying-Lan, Magnetic carbon nanotube based biodetection.
  79. Bertin, Claude L.; Guo, Frank; Rueckes, Thomas; Konsek, Steven L.; Meinhold, Mitchell; Strasburg, Max; Sivarajan, Ramesh; Huang, X. M. Henry, Memory arrays using nanotube articles with reprogrammable resistance.
  80. Bertin,Claude L.; Guo,Frank; Rueckes,Thomas; Konsek,Steven L.; Meinhold,Mitchell; Strasburg,Max; Sivarajan,Ramesh; Huang,X. M. Henry, Memory arrays using nanotube articles with reprogrammable resistance.
  81. Bertin, Claude L.; Huang, X. M. Henry; Rueckes, Thomas; Sivarajan, Ramesh, Memory elements and cross point switches and arrays for same using nonvolatile nanotube blocks.
  82. Bertin, Claude L.; Huang, X. M. Henry; Rueckes, Thomas; Sivarajan, Ramesh, Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks.
  83. Bertin, Claude L.; Huang, X. M. Henry; Rueckes, Thomas; Sivarajan, Ramesh, Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks.
  84. Ward, Jonathan W.; Rueckes, Thomas; Meinhold, Mitchell; Segal, Brent M., Method and system of using nanotube fabrics as joule heating elements for memories and other applications.
  85. Hamilton, Darlene, Method for adjusting a resistive change element using a reference.
  86. Viviani, Darlene, Method for dynamically accessing and programming resistive change element arrays.
  87. Hamilton, Darlene; Cleavelin, Rinn, Method for resetting a resistive change memory element.
  88. Zhang, Ruth Yu-ai; Tsui, Raymond K.; Tresek, Jr., John; Rawlett, Adam M., Method for selective chemical vapor deposition of nanotubes.
  89. Zhang,Ruth Yu Ai; Tsui,Raymond K.; Tresek, Jr.,John; Rawlett,Adam M., Method for selective chemical vapor deposition of nanotubes.
  90. Yates, Colin D., Method of aligning nanotubes and wires with an etched feature.
  91. Zhang,Yuegang; Dubin,Valery M.; Garner,C. Michael, Method of fabricating a composite carbon nanotube thermal interface device.
  92. Ward, Jonathan W.; Schlatka, Benjamin; Meinhold, Mitchell; Smith, Robert F.; Segal, Brent M., Method of forming a carbon nanotube-based contact to semiconductor.
  93. Shin, Jin Koog; Kim, Kyu Tae; Jung, Min Jae; Yoon, Sang Soo; Han, Young Soo; Lee, Jae Eun, Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method.
  94. Unger, Eugen, Method of inferring the existence of light by means of a measurement of the electrical characteristics of a nanotube bound with a dye, and detection arrangement.
  95. Segal, Brent M.; Rueckes, Thomas; Vogeli, Bernhard; Brock, Darren K.; Jaiprakash, Venkatachalam C.; Bertin, Claude L., Method of making sensor platform using a non-horizontally oriented nanotube element.
  96. Freer, Erik; Hamilton, James M.; Stumbo, David P.; Komiya, Kenji; Shibata, Akihide, Methods and systems for electric field deposition of nanowires and other devices.
  97. Cleavelin, C. Rinn; Rueckes, Thomas; Manning, H. Montgomery; Hamilton, Darlene; Gu, Feng, Methods for adjusting the conductivity range of a nanotube fabric layer.
  98. Roberts, David A.; Lin, Hao-Yu; Bengtson, Thomas R.; Rueckes, Thomas; Robinson, Karl; Manning, H. Montgomery; Sen, Rahul; Monteiro, Michel Pires, Methods for arranging nanoscopic elements within networks, fabrics and films.
  99. Roberts, David A.; Lin, Hao-Yu; Bengtson, Thomas R.; Rueckes, Thomas; Robinson, Karl; Manning, H. Montgomery; Sen, Rahul; Monteiro, Michel, Methods for arranging nanoscopic elements within networks, fabrics, and films.
  100. Roberts, David A.; Lin, Hao-Yu; Bengtson, Thomas R.; Rueckes, Thomas; Robinson, Karl; Manning, H. Montgomery; Sen, Rahul; Monteiro, Michel Pires, Methods for arranging nanotube elements within nanotube fabrics and films.
  101. Sen, Rahul; Kocab, J. Thomas; Gu, Feng, Methods for controlling density, porosity, and/or gap size within nanotube fabric layers and films.
  102. Harvard, Qawi, Methods for determining the resistive states of resistive change elements.
  103. Viviani, Darlene, Methods for enhanced state retention within a resistive change cell.
  104. Rueckes, Thomas; Manning, H. Montgomery; Sen, Rahul, Methods for forming nanotube fabric layers with increased density.
  105. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  106. Martin, Samuel; Duan, Xiangfeng; Fujii, Katsumasa; Hamilton, James M.; Iwata, Hiroshi; Leon, Francisco; Miller, Jeffrey; Negishi, Tetsu; Ohki, Hiroshi; Parce, J. Wallace; Pereira, Cheri X. Y.; Schuele, Paul John; Shibata, Akihide; Stumbo, David P.; Okada, Yasunobu, Methods for nanowire alignment and deposition.
  107. Rueckes, Thomas; Manning, H. Montgomery; Sen, Jr., Rahul, Methods for passivating a carbonic nanolayer.
  108. Rueckes, Thomas; Manning, H. Montgomery; Sen, Rahul, Methods for passivating a carbonic nanolayer.
  109. Rueckes, Thomas; Manning, H. Montgomery; Sen, Rahul, Methods for passivating a carbonic nanolayer.
  110. Rueckes, Thomas; Manning, H. Montgomery; Sen, Rahul, Methods for passivating a carbonic nanolayer.
  111. Gu,Gang; Pan,Lawrence; Zhang,Lian, Methods for producing and using catalytic substrates for carbon nanotube growth.
  112. Bertin, Claude L.; Rosendale, Glen, Methods for programming and accessing DDR compatible resistive change element arrays.
  113. Bertin, Claude L.; Cleveland, Lee, Methods for reading and programming 1-R resistive change element arrays.
  114. Dubin,Valery M., Methods of fabricating a composite carbon nanotube thermal interface device.
  115. Kirby,Kyle K.; Farnworth,Warren M., Methods of forming conductive vias and methods of forming multichip modules including such conductive vias.
  116. Lieber,Charles M.; Rueckes,Thomas; Joselevich,Ernesto; Kim,Kevin, Methods of forming nanoscopic wire-based devices and arrays.
  117. Lieber,Charles M.; Rueckes,Thomas; Joselevich,Ernesto; Kim,Kevin, Methods of forming nanoscopic wire-based devices and arrays.
  118. Rueckes, Thomas; Segal, Brent M., Methods of forming nanotube films and articles.
  119. Carlson,Robert E, Methods of making arrays and artificial receptors.
  120. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  121. Rueckes, Thomas; Segal, Brent M.; Brock, Darren K., Methods of making electromechanical three-trace junction devices.
  122. Bertin, Claude L.; Segal, Brent M.; Rueckes, Thomas; Ward, Jonathan W., Methods of making nanotube switches.
  123. Kirby,Kyle K.; Farnworth,Warren M., Methods of manufacture of a via structure comprising a plurality of conductive elements and methods of forming multichip modules including such via structures.
  124. Rueckes,Thomas; Segal,Brent M., Methods of nanotube films and articles.
  125. Rueckes,Thomas; Segal,Brent M., Methods of nanotubes films and articles.
  126. Ward,Jonathan W.; Rueckes,Thomas; Segal,Brent M., Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  127. Ward, Jonathan W.; Rueckes, Thomas; Segal, Brent M., Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles.
  128. Lee,Junghoon; Chung,JaeHyun; Lee,Kyong Hoon, Micro/nano-fabricated glucose sensors using single-walled carbon nanotubes.
  129. Ward, Jonathan W.; Smith, Robert F.; Segal, Brent M., Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices.
  130. Gabriel, Jean Christophe P.; Collins, Philip G.; Bradley, Keith; Gruner, George, Modification of selectivity for sensing for nanostructure device arrays.
  131. Gabriel, Jean-Christophe P.; Collins, Philip G.; Bradley, Keith; Gruner, George, Modification of selectivity for sensing for nanostructure device arrays.
  132. Gabriel, Jean-Christophe P.; Collins, Philip G.; Gruner, George; Bradley, Keith, Modification of selectivity for sensing for nanostructure sensing device arrays.
  133. Gabriel,Jean Christophe P.; Collins,Philip G.; Bradley,Keith; Gruner,George, Modification of selectivity for sensing for nanostructure sensing device arrays.
  134. Branton, Daniel; Golovchenko, Jene A, Molecular characterization with carbon nanotube control.
  135. Lukasik, Stephen J., Molecular separators, concentrators, and detectors preparatory to sensor operation, and methods of minimizing false positives in sensor operations.
  136. Lukasik, Stephen J., Molecular separators, concentrators, and detectors preparatory to sensor operation, and methods of minimizing false positives in sensor operations.
  137. Manning, H. Montgomery; Rueckes, Thomas; Bertin, Claude L.; Ward, Jonathan W.; Derderian, Garo, NRAM arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same.
  138. Bradley, Keith; Chang, Ying-Lan; Gabriel, Jean-Christophe P.; Passmore, John Loren; Skarupo, Sergei; Tu, Eugene; Valcke, Christian, Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices.
  139. Star, Alexander; Wyatt, Jeffrey; Joshi, Vikram; Stetter, Joseph R.; Grüner, George, Nanoelectronic capnometer adaptor including a nanoelectric sensor selectively sensitive to at least one gaseous constituent of exhaled breath.
  140. Joshi, Kanchan A.; Radtkey, Ray; Valcke, Christian, Nanoelectronic electrochemical test device.
  141. Joshi, Kanchan A.; Radtkey, Ray; Valcke, Christian, Nanoelectronic electrochemical test device.
  142. Doktycz, Mitchel J.; Simpson, Michael L.; McKnight, Timothy E.; Melechko, Anatoli V.; Lowndes, Douglas H.; Guillorn, Michael A.; Merkulov, Vladimir I., Nanoengineered membranes for controlled transport.
  143. Lincoln, Patrick Denis, Nanoscale array biomolecular bond enhancer device.
  144. Lincoln,Patrick Denis, Nanoscale array biomolecular bond enhancer device.
  145. Lieber,Charles M.; Duan,Xiangfeng; Huang,Yu; Agarwal,Ritesh, Nanoscale coherent optical components.
  146. Lieber, Charles M.; Patolsky, Fernando; Zheng, Gengfeng, Nanoscale sensors.
  147. Lieber, Charles M.; Wu, Yue; Yan, Hao, Nanoscale wire-based data storage.
  148. Lieber,Charles M.; Duan,Xiangfeng; Cui,Yi; Huang,Yu; Gudiksen,Mark; Lauhon,Lincoln J.; Wang,Jianfang; Park,Hongkun; Wei,Qingqiao; Liang,Wenjie; Smith,David C.; Wang,Deli; Zhong,Zhaohui, Nanoscale wires and related devices.
  149. Lieber, Charles M.; Rueckes, Thomas; Joselevich, Ernesto; Kim, Kevin, Nanoscopic wire-based devices and arrays.
  150. Lieber, Charles M.; Rueckes, Thomas; Joselevich, Ernesto; Kim, Kevin, Nanoscopic wire-based devices and arrays.
  151. Lieber, Charles M.; Rueckes, Thomas; Joselevich, Ernesto; Kim, Kevin, Nanoscopic wire-based electrical crossbar memory-devices and arrays.
  152. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  153. Lieber, Charles M.; Park, Hongkun; Wei, Qingqiao; Cui, Yi; Liang, Wenjie, Nanosensors.
  154. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenji, Nanosensors.
  155. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  156. Lieber,Charles M.; Park,Hongkun; Wei,Qingqiao; Cui,Yi; Liang,Wenjie, Nanosensors.
  157. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  158. Lieber, Charles M.; Fang, Ying; Patolsky, Fernando, Nanosensors and related technologies.
  159. Bertin, Claude L.; Segal, Brent M.; Rueckes, Thomas; Ward, Jonathan W., Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches.
  160. Gu,Gang; Pan,Lawrence S., Nanotube chemical sensor based on work function of electrodes.
  161. Ward, Jonathan W.; Segal, Brent M., Nanotube fabric-based sensor systems and methods of making same.
  162. Cole,Barrett E.; Higashi,Robert E., Nanotube fabrication basis.
  163. Rueckes, Thomas; Segal, Brent M., Nanotube films and articles.
  164. Whitefield, Bruce J.; Allman, Derryl D. J.; Rueckes, Thomas; Bertin, Claude L., Nanotube fuse structure.
  165. Jensen, Kenneth J.; Zettl, Alexander K.; Weldon, Jeffrey A., Nanotube resonator devices.
  166. Cole,Barrett E.; Higashi,Robert E., Nanotube sensor.
  167. Bertin,Claude L., Nanotube-based logic driver circuits.
  168. Bertin,Claude L.; Rueckes,Thomas; Segal,Brent M., Nanotube-based switching elements with multiple controls.
  169. Bertin, Claude L., Nanotube-based transfer devices and related circuits.
  170. Rueckes,Thomas; Segal,Brent M.; Vogeli,Bernard; Brock,Darren K.; Jaiprakash,Venkatachalam C.; Bertin,Claude L., Nanotube-on-gate FET structures and applications.
  171. Lu, Wei; Xiang, Jie; Wu, Yue; Timko, Brian P.; Yan, Hao; Lieber, Charles M., Nanowire heterostructures.
  172. Bertin, Claude L.; Ghenciu, Eliodor G.; Rueckes, Thomas; Manning, H. Montgomery, Non-volatile composite nanoscopic fabric NAND memory arrays and methods of making same.
  173. Bertin, Claude L.; Guo, Frank; Rueckes, Thomas; Konsek, Steven L.; Meinhold, Mitchell; Strasburg, Max; Sivarajan, Ramesh; Huang, X. M. Henry, Non-volatile shadow latch using a nanotube switch.
  174. Bertin,Claude L.; Guo,Frank; Ruckes,Thomas; Konsek,Steven L.; Meinhold,Mitchell; Strasburg,Max; Sivarajan,Ramesh; Huang,X. M. H., Non-volatile-shadow latch using a nanotube switch.
  175. Bertin, Claude L.; Ghenciu, Eliodor G.; Rueckes, Thomas; Manning, H. Montgomery, Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  176. Bertin, Claude L.; Ghenciu, Eliodor G.; Rueckes, Thomas; Manning, H. Montgomery, Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  177. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell, Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  178. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  179. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  180. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  181. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  182. Bertin, Claude L.; Rueckes, Thomas; Huang, X. M. Henry; Sivarajan, Ramesh; Ghenciu, Eliodor G.; Konsek, Steven L.; Meinhold, Mitchell; Ward, Jonathan W.; Brock, Darren K., Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same.
  183. Bertin, Claude L., Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  184. Bertin, Claude L.; Cleavelin, Rinn; Rueckes, Thomas, Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  185. Bertin, Claude L.; Rueckes, Thomas; Manning, H. M., Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  186. Bertin, Claude L.; Segal, Brent M., Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  187. Bertin, Claude L.; Segal, Brent M., Nonvolatile nanotube programmable logic devices and a nonvolatile nanotube field programmable gate array using same.
  188. Bertin, Claude L.; Rueckes, Thomas; Ward, Jonathan W.; Guo, Frank; Konsek, Steven L.; Meinhold, Mitchell, Nonvolatile resistive memories having scalable two-terminal nanotube switches.
  189. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M.; Vogeli, Bernhard; Brock, Darren K.; Jaiprakash, Venkatachalam C., One-time programmable, non-volatile field effect devices and methods of making same.
  190. Visel, Thomas; Soundarrajan, Prabhu, Oxygen-chemical agent sensor.
  191. Dubin, Valery M; Dory, Thomas S., Packaging of integrated circuits with carbon nanotube arrays to enhance heat dissipation through a thermal interface.
  192. Lee, Yun Hi; Ju, Byeong Kwon; Jang, Yoon Taek, Parallel and selective growth method of carbon nanotube on the substrates for electronic-spintronic device applications.
  193. Chen,Shih Hsun; Hsiao,Chun Yen; Hsiao,Shih Chien; Lee,Shie Heng; Cheng,Kuei Wen, Patterned carbon nanotube process.
  194. Yenilmez,Erhan; Dai,Hongjie, Patterned growth of single-walled carbon nanotubes from elevated wafer structures.
  195. Denes,Ferencz S.; Manolache,Sorin Odisei; Cruz Barba,Luis Emilio; Lagally,Max G.; Larson,Bradley James, Plasma-enhanced functionalization of carbon-containing substrates.
  196. Denes, Ferencz S.; Manolache, Sorin Odisei; Cruz-Barba, Luis Emilio; Martinez-Gomez, Alvaro de Jesus, Plasma-enhanced functionalization of substrate surfaces with quaternary ammonium and quaternary phosphonium groups.
  197. Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir Branko, Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof.
  198. Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir, Platinum-coated non-noble metal-noble metal core-shell electrocatalysts.
  199. Auvray,St��phane; Bourgoin,Jean Philippe; Derycke,Vincent; Goffman,Marcelo, Process for modifying at least one electrical property of a nanotube or a nanowire and a transistor incorporating it.
  200. Carruthers, J. Donald; Xu, Xueping; Wang, Luping, Production of carbon nanotubes.
  201. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Random access memory including nanotube switching elements.
  202. Li, Jing; Meyyappan, Meyya, Real time oil reservoir evaluation using nanotechnology.
  203. Passmore, John Loren; Gabriel, Jean Christophe P.; Star, Alexander; Joshi, Vikram; Skarupo, Sergei, Remotely communicating, battery-powered nanostructure sensor devices.
  204. Bertin, Claude L.; Cleavelin, C. Rinn; Rueckes, Thomas; Huang, X. M. Henry, Resistive change element array using vertically oriented bit lines.
  205. Viviani, Darlene, Resistive change element arrays using resistive reference elements.
  206. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M.; Ward, Jonathan W., Resistive elements using carbon nanotubes.
  207. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, J. Thomas, Resistive materials comprising mixed nanoscopic particles and carbon nanotubes.
  208. Horibe,Masahiro; Kawabata,Akio; Nihei,Mizuhisa, Semiconductor device and method of manufacturing the same.
  209. Horibe,Masahiro; Kawabata,Akio; Nihei,Mizuhisa, Semiconductor device and method of manufacturing the same.
  210. Afzali-Ardakani, Ali; Sekaric, Lidija; Tulevski, George S., Semiconductor nanowires charge sensor.
  211. Bryant, Craig; Chang, Ying-Lan; Gabriel, Jean-Christophe P.; Johnson, Bradley N.; Kuzmych, Oleksandr; Mickelson, William; Passmore, John Loren; Skarupo, Sergei; Valcke, Christian, Sensor having a thin-film inhibition layer.
  212. Bryant, Craig; Chang, Ying-Lan; Gabriel, Jean-Christophe P.; Johnson, Bradley N.; Kuzmych, Oleksandr; Mickelson, William; Passmore, John Loren; Skarupo, Sergei; Valcke, Christian, Sensor having a thin-film inhibition layer.
  213. Segal, Brent M.; Rueckes, Thomas; Vogeli, Bernhard; Brock, Darren K.; Jaiprakash, Venkatachalam C.; Bertin, Claude L., Sensor platform using a horizontally oriented nanotube element.
  214. Segal, Brent M.; Rueckes, Thomas; Vogeli, Bernhard; Brock, Darren; Jaiprakash, Venkatachalam C.; Bertin, Claude L., Sensor platform using a horizontally oriented nanotube element.
  215. Segal, Brent M.; Rueckes, Thomas; Vogeli, Bernhard; Brock, Darren K.; Jaiprakash, Venkatachalam C.; Bertin, Claude L., Sensor platform using a non-horizontally oriented nanotube element.
  216. Segal, Brent M.; Rueckes, Thomas; Vogeli, Bernhard; Brock, Darren K.; Jaiprakash, Venkatachalam C.; Bertin, Claude L., Sensor platform using a non-horizontally oriented nanotube element.
  217. Segal,Brent M.; Rueckes,Thomas; Vogeli,Bernhard; Brock,Darren; Jaiprakash,Venkatachalam C.; Bertin,Claude L., Sensor platform using a non-horizontally oriented nanotube element.
  218. Carlson,Robert E., Sensors employing combinatorial artificial receptors.
  219. Strano, Michael S.; Baik, Seunghyun; Barone, Paul, Sensors employing single-walled carbon nanotubes.
  220. Munoz,Beth C.; Pierce,Kenneth J.; Galloway,Collin P., Sensors with improved properties.
  221. Sen, Rahul; Sivarajan, Ramesh; Rueckes, Thomas; Segal, Brent M., Spin-coatable liquid for formation of high purity nanotube films.
  222. Sen, Rahul; Sivarajan, Ramesh; Rueckes, Thomas; Segal, Brent M., Spin-coatable liquid for formation of high purity nanotube films.
  223. Bertin, Claude L., Storage elements using nanotube switching elements.
  224. Bertin,Claude L., Storage elements using nanotube switching elements.
  225. Kirby,Kyle K.; Farnworth,Warren M., Substrate, semiconductor die, multichip module, and system including a via structure comprising a plurality of conductive elements.
  226. Kirby,Kyle K.; Farnworth,Warren M., Substrate, semiconductor die, multichip module, and system including a via structure comprising a plurality of conductive elements.
  227. Golovchenko,Jene A.; Peng,Haibing, Suspended carbon nanotube field effect transistor.
  228. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, Thomas, Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same.
  229. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, J. Thomas, Switching materials comprising mixed nanoscopic particles and carbon nanotubes and methods of making and using the same.
  230. Reilly, Peter T. A., System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons.
  231. Gu, Shiqun; McGrath, Peter G.; Elmer, James; Carter, Richard J.; Rueckes, Thomas, Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers.
  232. Segal, Brent M.; Ward, Jonathan W.; Rueckes, Thomas, Triodes using nanofabric articles and methods of making the same.
  233. Bertin, Claude L.; Meinhold, Mitchell; Konsek, Steven L.; Ruckes, Thomas; Strasburg, Max; Guo, Frank; Huang, X. M. Henry; Sivarajan, Ramesh, Two-terminal nanotube devices and systems and methods of making same.
  234. Bertin, Claude L.; Meinhold, Mitchell; Konsek, Steven L.; Rueckes, Thomas; Strasburg, Max; Guo, Frank; Huang, X. M. Henry; Sivarajan, Ramesh, Two-terminal nanotube devices and systems and methods of making same.
  235. Manning, H. Montgomery; Rueckes, Thomas; Ward, Jonathan W.; Segal, Brent M., Two-terminal nanotube devices including a nanotube bridge and methods of making same.
  236. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, J. Thomas, Two-terminal switching device using a composite material of nanoscopic particles and carbon nanotubes.
  237. Ghenciu, Eliodor G.; Rueckes, Thomas; Yao, Thierry; Kocab, J. Thomas, Two-terminal switching devices comprising coated nanotube elements.
  238. Bertin, Claude L.; Rueckes, Thomas; Segal, Brent M., Volatile nanotube-based switching elements with multiple controls.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로