최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
SAI
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
DataON 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
Edison 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
Kafe 바로가기국가/구분 | United States(US) Patent 등록 |
---|---|
국제특허분류(IPC7판) |
|
출원번호 | US-0847884 (2001-05-01) |
발명자 / 주소 |
|
출원인 / 주소 |
|
대리인 / 주소 |
|
인용정보 | 피인용 횟수 : 726 인용 특허 : 31 |
A device, system and method for diagnosing and treating gastric disorders is provided. A functional device resides within the patient's stomach and is secured to the stomach wall by an attachment device. The functional device may be a sensor for sensing various parameters of the stomach or stomach e
A device, system and method for diagnosing and treating gastric disorders is provided. A functional device resides within the patient's stomach and is secured to the stomach wall by an attachment device. The functional device may be a sensor for sensing various parameters of the stomach or stomach environment, or may be a therapeutic delivery device. The functional device in one embodiment provides a device, system and method for gastric electrical stimulation where stimulating electrodes are secured to the wall of the stomach by the attachment device or otherwise. A preferred device includes: at least one stimulating electrode in electrical contact with the stomach wall; an electronics unit containing the electronic circuitry of the device; and an attachment mechanism for attaching the device to the stomach wall. The functional devices may be programmed to respond to sensed information or signals. An endoscopic delivery system delivers the functional device through the esophagus and into the stomach where it is attached the stomach wall. The endoscopic instruments attach or remove the attachment devices and functional devices from the stomach and may be used to assist in determining the optimal attachment location.
A device, system and method for diagnosing and treating gastric disorders is provided. A functional device resides within the patient's stomach and is secured to the stomach wall by an attachment device. The functional device may be a sensor for sensing various parameters of the stomach or stomach e
A device, system and method for diagnosing and treating gastric disorders is provided. A functional device resides within the patient's stomach and is secured to the stomach wall by an attachment device. The functional device may be a sensor for sensing various parameters of the stomach or stomach environment, or may be a therapeutic delivery device. The functional device in one embodiment provides a device, system and method for gastric electrical stimulation where stimulating electrodes are secured to the wall of the stomach by the attachment device or otherwise. A preferred device includes: at least one stimulating electrode in electrical contact with the stomach wall; an electronics unit containing the electronic circuitry of the device; and an attachment mechanism for attaching the device to the stomach wall. The functional devices may be programmed to respond to sensed information or signals. An endoscopic delivery system delivers the functional device through the esophagus and into the stomach where it is attached the stomach wall. The endoscopic instruments attach or remove the attachment devices and functional devices from the stomach and may be used to assist in determining the optimal attachment location. of an eye including a target blood vessel, said illumination system being configured to adjust the intensity of light illuminating the region; an image pickup device positioned and configured to receive light scattered from the region illuminated by said illumination system and to produce signals in response to receiving the scattered light from the region; a control system connected to said illumination system and said image pickup device so as to receive the signals produced by said image pickup device and configured to compute the diameter of the target blood vessel based on the signals from said image pickup device; and a tracking system connected to said control system and configured to perform an automatic tracking operation on the target blood vessel based on the signals from said image pickup device, wherein said control system is configured to control said tracking system so that said tracking system performs the automatic tracking operation simultaneous with said control system computing the diameter of the target blood vessel and so that said tracking system performs the automatic tracking operation when said control system does not computer the diameter of the target blood vessel, and wherein said control system is configured to control said illumination system to change the intensity of the illumination applied to the region when the automatic tracking operation and the target-blood-vessel-diameter computation are simultaneously performed above the level of the illumination applied to the region when the automatic tracking operation is performed while said control system does not compute the target-blood-vessel diameter. 2. An ocular examination system according to claim 1, wherein said illumination system comprises: a light source of illumination light illuminating the region; a plurality of filters of different transmittances that adjust the intensity of the illumination light illuminating the region; and a motor, connected to the plurality of filters, that moves one filter at a time into a path of the illumination light directed to the eye fundus, wherein said control system comprises: a filter controller configured to control said motor to move one of the plurality of filters into the path of the illumination light to adjust the intensity of illumination light illuminating the region; and a system controller connected to said filter controller, said tracking system, and said image pickup device and configured to compute the diameter of the target blood vessel, wherein said system controller controls said tracking system and controls said filter controller. 3. An ocular examination system according to claim 2, further comprising a neutral density unit comprising a circular element comprising: said plurality of filters, which are spaced apart; and a light-shielding portion extending between said plurality of spaced-apart filters, wherein said plurality of filters are neutral density filters, and wherein said motor engages the center of said circular element to rotate said circular element. 4. An ocular examination system according to claim 1, wherein said illumination system comprises: a measurement light source emitting measurement light illuminating the region; and a tracking light source emitting tracking light illuminating the region, wherein said illumination system adjusts the intensity of tracking light illuminating the region, wherein said image pickup device comprises: a measurement-light image pickup device positioned and configured to receive measurement light scattered by the region and configured to produce measurement-light signals; and a tracking-light image pickup device positioned and configured to receive tracking light scattered by the region and configured to produce tracking-light signals; wherein said control system is connected to said measurement-light image pickup device and said tracking-light image pickup device to receive the measurement- light signals and the tracking-light signals. 5. An ocular examination system according to claim 4, wherein said measurement light source comprises a laser diode emitting red light; wherein said tracking light source comprises a helium neon laser emitting green light; wherein said measurement-light image pickup device comprises two photomultipliers; and wherein said tracking-light image pickup device comprises charge coupled device. 6. An ocular examination system according to claim 5, further comprising: a set of optical elements positioned and configured to mix the measurement light and the tracking light into a combined beam and to direct the combined beam to the region of the eye fundus and to direct the combined beam scattered by the region toward said measurement-light image pickup device and said tracking-light image pickup device; an optical element positioned and configured to separate the measurement light and the tracking light of the combined beam scattered by the region; an optical element positioned and configured to direct the separated measurement light to the measurement-light image pickup device, and an optical element positioned and configured to direct the tracking light to the tracking-light image pickup device. 7. An ocular examination system according to claim 1, wherein said tracking system comprises: a galvanometric mirror; a mirror controller, connected to said galvanometric mirror and said control system, wherein said control system controls said mirror controller, wherein said image pickup device captures an image of the target blood vessel and produces a blood-vessel-image signal in response to capturing the image of the target blood vessel, and transmits the blood-vessel-image signal to said control system, wherein said control system determines the amount of movement of the target blood-vessel image captured by said image pickup device over time from the blood-vessel-image signal received from said image pickup device, and wherein said control system instructs said mirror controller to move said galvanometric mirror to produce a substantially stationary target blood-vessel image on said image pickup device in response to determining the amount of movement of the target blood-vessel image. 8. An ocular examination system according to claim 1, wherein said control system determines the amount of movement of the target blood vessel, and then determines the target blood vessel diameter, the velocity of blood flow in the target blood vessel, and the blood flow amount in the target blood vessel in response to receiving the signals produced by said image pickup device. 9. An ocular examination system according to claim 1, wherein said illumination system comprises: a light source; selectable neutral density filters positioned in an optical path between said light source and the eye fundus, wherein each neutral density filter has a different transmittance, and a mechanism connected to said selectable neutral density filters, wherein said mechanism selects one neutral density filter at a time to place in the optical path, thereby adjusting the intensity of light illuminating the region, and wherein said control system controls said mechanism to select a desired neutral density filter to place in the optical path. 10. An ocular examination system according to claim 1, further comprising an intensifier disposed in front of said image pickup device, wherein said intensifier is connected to said image pickup device and to said control system, wherein said intensifier receives an image of the region, wherein said intensifier optically amplifies the image of said region by an amplification factor, and wherein said control system controls the amplification factor of said intensifier according to the intensity of the illumination of said illumination system. 11. An ocular examination system according to claim 10, wherein said control system reduces th
해당 특허가 속한 카테고리에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
IPC | Description |
---|---|
A | 생활필수품 |
A62 | 인명구조; 소방(사다리 E06C) |
A62B | 인명구조용의 기구, 장치 또는 방법(특히 의료용에 사용되는 밸브 A61M 39/00; 특히 물에서 쓰이는 인명구조 장치 또는 방법 B63C 9/00; 잠수장비 B63C 11/00; 특히 항공기에 쓰는 것, 예. 낙하산, 투출좌석 B64D; 특히 광산에서 쓰이는 구조장치 E21F 11/00) |
A62B-1/08 | .. 윈치 또는 풀리에 제동기구가 있는 것 |
내보내기 구분 |
|
---|---|
구성항목 |
관리번호, 국가코드, 자료구분, 상태, 출원번호, 출원일자, 공개번호, 공개일자, 등록번호, 등록일자, 발명명칭(한글), 발명명칭(영문), 출원인(한글), 출원인(영문), 출원인코드, 대표IPC 관리번호, 국가코드, 자료구분, 상태, 출원번호, 출원일자, 공개번호, 공개일자, 공고번호, 공고일자, 등록번호, 등록일자, 발명명칭(한글), 발명명칭(영문), 출원인(한글), 출원인(영문), 출원인코드, 대표출원인, 출원인국적, 출원인주소, 발명자, 발명자E, 발명자코드, 발명자주소, 발명자 우편번호, 발명자국적, 대표IPC, IPC코드, 요약, 미국특허분류, 대리인주소, 대리인코드, 대리인(한글), 대리인(영문), 국제공개일자, 국제공개번호, 국제출원일자, 국제출원번호, 우선권, 우선권주장일, 우선권국가, 우선권출원번호, 원출원일자, 원출원번호, 지정국, Citing Patents, Cited Patents |
저장형식 |
|
메일정보 |
|
안내 |
총 건의 자료가 검색되었습니다. 다운받으실 자료의 인덱스를 입력하세요. (1-10,000) 검색결과의 순서대로 최대 10,000건 까지 다운로드가 가능합니다. 데이타가 많을 경우 속도가 느려질 수 있습니다.(최대 2~3분 소요) 다운로드 파일은 UTF-8 형태로 저장됩니다. ~ |
Copyright KISTI. All Rights Reserved.
AI-Helper는 오픈소스 모델을 사용합니다. 사용하고 있는 오픈소스 모델과 라이센스는 아래에서 확인할 수 있습니다.
AI-Helper uses Open Source Models. You can find the source code of these open source models, along with applicable license information below. (helpdesk@kisti.re.kr)
OpenAI의 API Key를 브라우저에 등록하여야 ChatGPT 모델을 사용할 수 있습니다.
등록키는 삭제 버튼을 누르거나, PDF 창을 닫으면 삭제됩니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.