대표
청구항
▼
A method of preparing a vehicle panel assembly for attaching the panel to a vehicle is disclosed which provides a "ready-to-install" panel assembly. The panel assembly includes first and second spaced sides, with the bead of heat activated adhesive provided on the second side of the panel. The panel and bead are heated preferably by applying shortwave and longwave infrared radiation, with the shortwave infrared radiation being applied to an adhesive free side of the panel to heat the panel and, thereby, indirectly heat the bead of the heat activated adhe...
A method of preparing a vehicle panel assembly for attaching the panel to a vehicle is disclosed which provides a "ready-to-install" panel assembly. The panel assembly includes first and second spaced sides, with the bead of heat activated adhesive provided on the second side of the panel. The panel and bead are heated preferably by applying shortwave and longwave infrared radiation, with the shortwave infrared radiation being applied to an adhesive free side of the panel to heat the panel and, thereby, indirectly heat the bead of the heat activated adhesive. The longwave infrared radiation is applied to the adhesive side of the panel to directly heat the bead and thereby activate the adhesive. The ready-to-install adhesive may be applied on or adjacent to a gasket, such as a polyvinyl chloride (PVC) molding, a urethane molding, or the like. Optionally, either during or after heating, the substrate is cooled in order to ease handling of the panel assembly after the bead of adhesive is activate and ready for installation. e side opening and at least partly in registry with the wall of the side opening. Devices constructed in accordance with the invention include, singularly or in combination, a main expandable stent comprising at least one substantially circular side opening located between its proximal and distal end openings, which side opening may further comprise an expandable portion extending radially outward from the edges of the side opening; and a branch stent comprising proximal and distal end openings and which may further comprise a contacting portion at its proximal end, and which may optionally be constructed to form either a perpendicular branch or a non-perpendicular branch when inserted through a side opening of the main stent. The stents of the invention are marked with, or at least partially constructed of, a material which is imageable during intraluminal catheterization techniques, most preferably but not limited to ultrasound and x-ray. diology, vol. 170, No. 3, Part 2, pp. 1033-1037 (1989). Chuter, Timothy A.M., BM, BS, et al., Transfemoral Endovascular Aortic Graft Placement, Journal of Vascular Surgery, pp. 185-196 (Aug., 1993). Bard XT Catina Bifurcate Stent (Brochure) (Undated). r long-term culture in alginate beads," Journal of Cell Science, vol. 107, 1994, pp. 17-27. Helbing, G.; Burri, C.; Heit, W.; Neugebauer, R.; and Ruter, A., "In vivo synthesis of cartilage after transplantation of chondrocytes in animal experiments," Chir Forum Exp Klin Forsch, 1980, pp. 47-51. (Abstract in English). Hendrickson, D.A.; Nixon, A.J.; Grande, D.A.; Todhunter, R.J.; Minor, R.M.; Erb, H.; and Lust, G., "Chondrocyte-Fibrin Matrix Transplants for Resurfacing Extensive Articular Cartilage Defects," Journal of Orthopaedic Research, vol. 12, No. 4, 1994, p. 485-497. Hinek, A.; Kawiak, J.; Czarnowska, E.; and Barcew, B., "The Effect of Agarose and Dexamethasone on the Nature and Production of Extracellular Matrix Components by Elastic Cartilage Chondrocytes," Acta Biologica Hungarica, vol. 35, 1984, pp. 245-258. Insall, J., M.D., "The Pridie Debridement Operation for Osteoarthritis of the Knee," Clinical Orthopaedics and Related Research, No. 101, Jun. 1974, pp. 61-67. International Search Report dated Dec. 23, 1999. International Search Report dated Mar. 3, 2000. Ishizeki, K.; Nagano, H.; Fujiwara, H.; and Nawa, T., "Morphological changes during survival, cellular transformation, and calcification and the embryonic mouse: Meckel's cartilage transplanted into heterotopic sites," J. Carniofac Genet Dev. Biol, vol. 14, 1994, pp. 33-42. Johnson, L.L., "Arthroscopic Abrasion Arthroplasty," Operative Arthroscopy, edited by J.B. McGinty et al., Raven Press, New York, 1991, Chapter 24, pp. 341-360. Kandel, R.A., M.D.; Chen, H., M.Sc.; Clark, J.; and Renlund, R., D.V.M., M.Sc., "Transplantation of Cartilagenous Tissue Generated In Vitro Into Articular Joint Defects," Art. Cells, Blood Subs., and Immob. Biotech., vol. 23(5), 1995, pp. 565-577. Kawabe, N., M.D.; Ehrlich, M.G., and Mankin, H.J., M.D., "Growth Plate Reconstruction Using Chondrocyte Allograft Transplants," Journal of Pediatric Orthopaedics, vol. 7, 1987, pp. 381-388. Kawiak, J.; Moskalewski, S.; and Hinek, A., "Reconstruction of the elastic cartilage by isolated chondrocytes in autogeneic transplants," Acta anat., vol. 76, 1970, pp. 530-544. Kempson, G. E.; Tuke, M. A.; Dingle, J. T.; Barrett, A. J.; and Horsfield, P.H., "The Effects of Proteolytic Enzymes on the Mechanical Properties of Adult Human Articular Cartilage", Biochimcia et Biophysica Acta, vol. 428, 1976, pp. 741-760. Kirsch, T.; Swoboda, B.; and Von der Mark, K., "Ascorbate independent differentiation of human chondrocytes in vitro: simultaneous expression of types I and X collagen and mitrix mineralization," Differentiation, vol. 52, 1992, pp. 89-100. Kolettas, EE.; Buluwela, L.; Bayliss, M.T.; and Muir, H.I.; "Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes," Journal of Cell Science, vol. 108, 1995, pp. 1991-1999. Ksander et al., "Exogenous Transforming Growth Factor-Beta 2 Enhances Connective Tissue Formation and Wound Strength in Guinea Pig Dermal Wounds Healing By Secondary Intent," Annals of Surgery, vol. 211, No. 3, Mar. 1990, pp. 288-294, *Abstract; discussion*. Ksiazek, T., Ph.D. and Moskalewski, S., Ph.D., "Studies on Bone Formation by Cartilage Reconstructed by Isolated Epiphyseal Chondrocytes, Transplanted Syngeneically or Across Known Histocompatibility Barriers in Mice," Clinical Orthopaedics and Related Research, No. 172, Jan.-Feb. 1983, pp. 233-242. Miller, M.D., "Treatment of Chondral Injuries", Operative Techniques in Orthopaedics, 1997, vol. 7, No. 4, October. Minas, et al., "Chondrocytes Transplantation", Operative Techniques in Orthopaedics, 1997, vol. 7, p. 323-33. Moskalewski, S.; Hyc, A.; Grzela, T.; and Malejczyk, J., "Differences in Cartilage Formed Intramuscularly or in Joint Surface Defects by Syngeneic Rat Chondrocytes Isolated from the Articular-Epiphyseal Cartilage Complex," Cell Transplantation, vol. 2, 1993, pp. 467-473. Moskalewski, S. and Malejczyk, J., "Bone formation following intrarenal t