국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
US-0121741
(2002-04-12)
|
발명자
/ 주소 |
- Bredesen, Matthew A.
- Ibrahim, Daniel R.
- Smith, III, Ralph A.
|
출원인 / 주소 |
|
대리인 / 주소 |
|
인용정보 |
피인용 횟수 :
3 인용 특허 :
5 |
초록
▼
During assembly, shipping and handling before a mechanically-actuated fuel injector is installed into an internal combustion engine, the fuel injector tappet often accidentally disconnects from the fuel injector body. This separation of the tappet from the fuel injector body is caused by a force pla
During assembly, shipping and handling before a mechanically-actuated fuel injector is installed into an internal combustion engine, the fuel injector tappet often accidentally disconnects from the fuel injector body. This separation of the tappet from the fuel injector body is caused by a force placed upon the tappet by a biasing means, such as a spring, that pushes the tappet away from the injector body. The fuel injector of the present application solves this problem through the interaction of a retention clip, a retention opening in the fuel injector body, and a retention slot in the fuel injector tappet. The retention clip has a body and a protrusion. The retention clip body is contained within the fuel injector body, and the protrusion extends through the retention opening and into the retention slot. After it is assembled, the fuel injector of the present application remains connected during shipping and handling and permits easy installation into an internal combustion engine.
대표청구항
▼
During assembly, shipping and handling before a mechanically-actuated fuel injector is installed into an internal combustion engine, the fuel injector tappet often accidentally disconnects from the fuel injector body. This separation of the tappet from the fuel injector body is caused by a force pla
During assembly, shipping and handling before a mechanically-actuated fuel injector is installed into an internal combustion engine, the fuel injector tappet often accidentally disconnects from the fuel injector body. This separation of the tappet from the fuel injector body is caused by a force placed upon the tappet by a biasing means, such as a spring, that pushes the tappet away from the injector body. The fuel injector of the present application solves this problem through the interaction of a retention clip, a retention opening in the fuel injector body, and a retention slot in the fuel injector tappet. The retention clip has a body and a protrusion. The retention clip body is contained within the fuel injector body, and the protrusion extends through the retention opening and into the retention slot. After it is assembled, the fuel injector of the present application remains connected during shipping and handling and permits easy installation into an internal combustion engine. to 25 percent of total fuel combusted in said combustion chamber. 12. The internal combustion engine of claim 1, further including a sensor that generates a signal indicative of cylinder pressure in said combustion chamber. 13. The internal combustion engine of claim 12, wherein said sensor is at least one of a pressure sensor, accelerometer, ion probe, optical diagnostic, strain gage, load washer, fast thermocouple, torque sensor, RPM sensor and emissions sensor. 14. The internal combustion engine of claim 12, wherein said direct fuel injector injects said second fuel when said sensor senses a predetermined reduction in cylinder pressure in said combustion chamber. 15. The internal combustion engine of claim 12, wherein injection rate of said second fuel is controlled by said control system to maintain a substantially constant cylinder pressure that is not greater than a desired maximum cylinder pressure during a predetermined range of motion of said piston assembly. 16. The internal combustion engine of claim 1, wherein said mixing device includes at least one of a carburetor, a throttle body injector, and a port fuel injector that is adapted to mix air and said first fuel upstream of said combustion chamber. 17. The internal combustion engine of claim 1, wherein said mixing device is a fuel injecting device adapted to directly inject said first fuel into said combustion chamber. 18. The internal combustion engine of claim 17, further including a high pressure system for pressurizing said first fuel prior to directly injecting said first fuel into said combustion chamber. 19. The internal combustion engine of claim 17, wherein said fuel injecting device is said direct fuel injector so that said direct fuel injector provides both said first fuel and said second fuel to said combustion chamber. 20. The internal combustion engine of claim 17, wherein said mixing device is a first direct fuel injector adapted to directly inject said first fuel into said combustion chamber and said direct fuel injector is a second direct fuel injector adapted to directly inject said second fuel into said combustion chamber. 21. The internal combustion engine of claim 1, wherein at least one of said mixing device and said direct fuel injector is further adapted to provide an injection prior to ignition of said premixed charge to time the start of combustion of said premixed charge in said combustion chamber. 22. The internal combustion engine of claim 21, wherein said injection provided prior to ignition of said premixed charge is at least one of a pilot injection and an early control injection. 23. The internal combustion engine of claim 5, wherein said control system is further adapted to variably control amount of said second fuel injected by said direct fuel injector relative to amount of said first fuel based on at least one of an operating condition and operating mode of said internal combustion engine. 24. The internal combustion engine of claim 23, wherein said second fuel is injected into said combustion chamber at least one of during combustion of said premixed charge and shortly after combustion of said premixed charge in said combustion chamber. 25. The internal combustion engine of claim 23, wherein said engine body includes a plurality of cylinders each having a piston assembly that forms a combustion chamber, said control system being further adapted to vary amount of said second fuel injected by said direct fuel injector in fewer than all of said plurality of cylinders at a time. 26. The internal combustion engine of claim 23, wherein said second fuel injected by said direct fuel injector constitutes 0.1 to 50 percent of total fuel combusted in said combustion chamber. 27. The internal combustion engine of claim 26, wherein said mixing device includes at least one of a carburetor, a throttle body injector, and a port fuel injector that is adapted to mix air and said natural gas upstream of said combustion chamber. 28. The internal
※ AI-Helper는 부적절한 답변을 할 수 있습니다.