IPC분류정보
국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
US-0966811
(2001-09-27)
|
발명자
/ 주소 |
- Moses, William W.
- Beuville, Eric
- Pedrali-Noy, Marzio
|
출원인 / 주소 |
- The Regents of the University of California
|
대리인 / 주소 |
|
인용정보 |
피인용 횟수 :
6 인용 특허 :
3 |
초록
▼
An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is gen
An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.
대표청구항
▼
An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is gen
An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof. xible pad is capable of collapsing when a user applies a first force to the button, the second dome of the flexible pad is capable of collapsing when the user applies a second force to the button, the second force being greater in value than the first force. 2. The switch assembly of claim 1 further comprising a lever, the lever being rotatably attached to the base portion and capable of contacting a top portion of the button when the user applies the first force and the second force.3. The switch assembly of claim 1 wherein the switch assembly is used to operate a window in a vehicle, the first force applied to the button capable of operating the window in a first operational mode, the second force applied to the button capable of operating the window in a second operational mode.4. The switch assembly of claim 3 wherein the first operational mode allows the window to open only when the first force is applied to the button, the second operational mode allows the window to open automatically after the second force is applied to the button.5. The switch assembly of claim 2 further comprising a second button that is slidably attached to the base portion, the lever further capable of contacting a top portion of the second button when the user applies a third force, the third force being in an opposite direction of the first force and the second force.6. The switch assembly of claim 5 wherein the switch assembly is used to operate a window in a vehicle, the first force applied to the button capable of operating the window in a first operational mode, the second force applied to the button capable of operating the window in a second operational mode, the third force applied to the button capable of operating the window in a third operational mode.7. The switch assembly of claim 6 wherein the first operational mode allows the window to open only when the first force is applied to the button, the second operational mode allows the window to open automatically after the second force is applied to the button, and the third operational mode allows the window to close only when the third force is applied to the button.8. The switch assembly of claim 1 wherein the flexible pad is made of a polycarbonate material.9. The switch assembly of claim 8 further comprising a white light emitting diode, the base portion mounted adjacent to a first side of the flexible pad, the white light emitting diode mounted adjacent to a second side of the flexible pad, the white light emitting diode capable of providing a colored light for the switch assembly on the first side of the flexible pad.10. The switch assembly of claim 1 wherein the flexible pad includes a translucent portion for passively filtering light from a white light emitting diode.11. A switch assembly comprising: a base portion; a flexible pad having a first dome and a second dome; a paddle that is slidably attached to the base portion, the paddle having a first end portion and a second end portion, the first end portion of the paddle adjacent to the first dome of the flexible pad, the second end portion of the paddle adjacent to the second dome of the flexible pad; a button that is slidably attached to the base portion, the button having a bottom portion that is capable of contacting the paddle; a lever that is rotatably attached to the base portion, the lever capable of contacting a top portion of the button; wherein the first dome of the flexible pad is capable of collapsing when a user applies a first force to the lever, the second dome of the flexible pad is capable of collapsing when the user applies a second force to the lever, the second force being greater in value than the first force. 12. The switch assembly of claim 11 wherein the switch assembly is used to operate a window in a vehicle the first force applied to the lever capable of operating the window in a first operational mode, the second force applied to the lever capable of operating the window in a seco nd operational mode.13. The switch assembly of claim 12 wherein the first operational mode allows the window to open only when the first force is applied to the lever, the second operational mode allows the window to open automatically after the second force is applied to the lever.14. The switch assembly of claim 11 further comprising a second button that is slidably attached to the base portion, the lever further capable of contacting a top portion of the second button when the user applies a third force to the lever, the third force being in an opposite direction of the first force and the second force.15. The switch assembly of claim 14 wherein the switch assembly is used to operate a window in a vehicle, the first force applied to the lever capable of operating the window in a first operational mode, the second force applied to the lever capable of operating the window in a second operational mode, the third force applied to the lever capable of operating the window in a third operational mode.16. The switch assembly of claim 15 wherein the first operational mode allows the window to open only when the first force is applied to the lever, the second operational mode allows the window to open automatically after the second force is applied to the lever, and the third operational mode allows the window to close only when the third force is applied to the lever.17. The switch assembly of claim 11 wherein the flexible pad is made of a polycarbonate material.18. The switch assembly of claim 17 further comprising a white light emitting diode, the base portion mounted adjacent to a first side of the flexible pad, the white light emitting diode mounted adjacent to a second side of the flexible pad, the white light emitting diode capable of providing a colored light for the switch assembly on the first side of the flexible pad.19. The switch assembly of claim 11 wherein the flexible pad includes a translucent portion for passively filtering light from a white light emitting diode.20. A switch assembly comprising: a flexible pad having at least a first dome, a second dome, and a translucent portion; a base portion mounted adjacent a first side of the flexible pad; a paddle that is slidably attached to the base portion, the paddle having a first end portion and a second end portion, the first end portion of the paddle adjacent to the first dome of the flexible pad, the second end portion of the paddle adjacent to the second dome of the flexible pad; a lever that is rotatably attached to the base portion, the lever having an opening to allow for the transmission of light; and a white light emitting diode mounted adjacent a second side of the flexible pad at the translucent portion, the white light emitting diode capable of providing a colored light for the switch assembly on the second side of the flexible pad and through the opening in the lever; wherein the first dome of the flexible pad is capable of collapsing when a user applies a first force to the lever, the second dome of the flexible pad is capable of collapsing when the user applies a second force to the lever. 21. The switch assembly of claim 20 wherein the switch assembly is used to operate a window in a vehicle, the first force applied to the lever capable of operating the window in a first operational mode, the second force applied to the lever capable of operating the window in a second operational mode.22. The switch assembly of claim 21 wherein the first operational mode allows the window to open only when the first force is applied to the lever, the second operational mode allows the window to open automatically after the second force is applied to the lever.23. The switch assembly of claim 20 further comprising a button that is slidably attached to the base portion, the button having a bottom portion that is capable of contacting the paddle and a top portion on that is capable being contacted by the lever.24. The switch assembly of claim 23 furthe r comprising a second button that is slidably attached to the base portion, the lever further capable of contacting a top portion of the second button when the user applies a third force to the lever, the third force being in an opposite direction of the first force and the second force.25. The switch assembly of claim 24 wherein the switch assembly is used to operate a window in a vehicle, the first force applied to the lever capable of operating the window in a first operational mode, the second force applied to the lever capable of operating the window in a second operational mode, the third force applied to the lever capable of operating the window in a third operational mode.26. The switch assembly of claim 25 wherein the first operational mode allows the window to open only when the first force is applied to the lever, the second operational mode allows the window to open automatically after the second force is applied to the lever, and the third operational mode allows the window to close only when the third force is applied to the lever.27. The switch assembly of claim 20 wherein the flexible pad is made of a polycarbonate material.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.