$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Method and apparatus for generating a visible image with an infrared transmissive window 원문보기

IPC분류정보
국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판)
  • G09G-005/00
출원번호 US-0746551 (2000-12-21)
발명자 / 주소
  • Klocek, Paul
  • Rester, David H.
  • Weimer, Wayne A.
출원인 / 주소
  • Raytheon Company
대리인 / 주소
    Baker Botts L.L.P.
인용정보 피인용 횟수 : 47  인용 특허 : 15

초록

A vehicle ( 10 ) includes an infrared imaging system ( 11 ). The system includes an infrared camera ( 12 ) positioned in the center of the front grille of the vehicle. The infrared camera includes a window ( 13 ) that has a holographic fringe pattern ( 14 ) which cooperates with visible light rays (

대표청구항

1. An apparatus comprising an element having a surface and structure, the structure comprising a holographic fringe pattern embossed in the surface of the element, the structure operable to cooperate with visible light rays to generate an image which is visible at a location spaced from said element

이 특허에 인용된 특허 (15)

  1. Steven A. Stringfellow, Combined head-up display.
  2. Lillquist Robert D. (Schenectady NY), Composite visible/thermal-infrared imaging apparatus.
  3. Klocek Paul (Dallas TX) Trotta Patrick A. (Plano TX), Durable polymeric optical systems.
  4. Bonnell Leonard J. ; Leiner Dennis C. ; Brukilacchio Thomas, Endoscope for imaging infrared emissions within the range of 2 to 14 microns.
  5. Groves Doyle J. (Kokomo IN) Shogren William G. (Noblesville IN) Harter ; Jr. Joseph E. (Fishers IN), Head up display with night vision enhancement.
  6. Terakawa Tomomitsu,JPX ; Naruse Yoshihiro,JPX ; Ikeyama Takeshi,GBX, Image processor.
  7. Nakano, Takayuki; Tamagawa, Yasuhisa, Infrared optical system for infrared cameras.
  8. Klapper Stuart H. ; Cook Lacy G., Low cost night vision camera.
  9. Klapper Stuart H. ; Laitin Howard ; Kormos Alex L. ; Cook Lacy G. ; Masarik David M. ; Salvio Paul R., Low cost night vision system for nonmilitary surface vehicles.
  10. Florant Olivier (Epinay Sur Senart FRX), Method and device to obtain an element of information on depth in the field seen by picture-shooting device.
  11. Hofmann Wilfried (Taufkirchen DEX) Lusch Herbert (Taufkirchen DEX) Rauffer Walter (Steinebach DEX) Zieran Eberhard (Grnwald DEX) Sylla Jrgen (Sauerlach-Arget DEX), Microfilm sensing device with a projection lamp and cold-light mirror.
  12. Sinor Timothy Wayne ; Estrera Joseph Paul, Night vision having an image intensifier tube, improved transmission mode photocathode for such a device, and method of.
  13. Timothy Fohl ; Jeffrey Thomas Remillard ; Willes H. Weber, Night vision system utilizing a diode laser illumination module and a method related thereto.
  14. Owen Larry D. (Phoenix AZ), Telescopic day and night sight.
  15. Cooper Alan Neal, Video equipment and method to assist motor vehicle operators.

이 특허를 인용한 특허 (47)

  1. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing a plurality of area-type illumination and imaging zones intersecting within the 3D imaging volume of the system.
  2. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing a plurality of area-type illumination and imaging zones intersecting within the 3D imaging volume of the system.
  3. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing object motion controlled area-type illumination and imaging operations.
  4. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic POS-based digital image capturing and processing system employing object motion controlled area-type illumination and imaging operations.
  5. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Automatic omnidirectional bar code symbol reading system employing linear-type and area-type bar code symbol reading stations within the system housing.
  6. Briggance, William G., Camera mounted at rear of vehicle.
  7. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Mikhail; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Code symbol reading system.
  8. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Coplanar laser illumination and imaging subsystem employing spectral-mixing and despeckling of laser illumination.
  9. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Countertop-based digital image capture and processing system having an illumination subsystem employing a single array of LEDs disposed behind an illumination focusing lens structure integrated within the imaging window, for generating a field of visible illumination highly confined below the field.
  10. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Device for optically multiplexing a laser beam.
  11. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Device for producing a laser beam of reduced coherency using high-frequency modulation of the laser diode current and optical multiplexing of the output laser beam.
  12. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Digital illumination and imaging subsystem employing despeckling mechanism employing high-frequency modulation of laser diode drive current and optical beam multiplexing techniques.
  13. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system employing a linear LED-based illumination array mounted behind an illumination-focusing lens component integrated within the imaging window of the system.
  14. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; Foney, Shawn De; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system employing an image formation and detection subsystem having an area-type image detection array supporting periodic occurrance of snap-shot type image acquisition cycles at a high-repetition rate during object illumination.
  15. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system employing an image formation and detection subsystem having image formation optics providing a field of view (FOV) on an area-type image detection array, and a multi-mode illumination subsystem having near and far field LED-based illumination arrays for illuminating near and far field portions of said FOV.
  16. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system employing an image formation and detection system having an area-type image detection array supporting single snap-shot and periodic snap-shot modes of image acquisition during object illumination and imaging operations.
  17. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system having a printed circuit (PC) board with a light transmission aperture, wherein an image detection array is mounted on the rear side of said PC board, and a linear array of light emitting diodes (LEDS) is mounted on the front surface of said PC board, and aligned with an illumination-focusing lens structure integrated within said imaging window.
  18. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system having a printed circuit (PC) board with light transmission aperture, wherein first and second field of view (FOV) folding mirrors project the FOV of a digital image detection array on the rear surface of said PC board, through said light transmission aperture.
  19. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system having a single printed circuit (PC) board with a light transmission aperture, wherein a first linear array of visible light emitting diodes (LEDs) are mounted on the rear side of the PC board for producing a linear targeting illumination beam, and wherein a second linear array of visible LEDs are mounted on the front side of said PC board for producing a field of visible illumination within the field of view (FOV) of the system.
  20. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system supporting a periodic snapshot mode of operation wherein during each image acquisition cycle, the rows of image detection elements in the image detection array are exposed simultaneously to illumination.
  21. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Digital image capture and processing system supporting a presentation mode of system operation which employs a combination of video and snapshot modes of image detection array operation during a single cycle of system operation.
  22. Knowles, C. Harry; Zhu, Xiaoxun; Xian, Tao, Digital image capturing and processing system employing a plurality of area-type illuminating and imaging stations projecting a plurality of coextensive area-type illumination and imaging zones into a 3D imaging volume, and controlling operations therewithin using.
  23. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Digital image capturing and processing system employing automatic object detection and spectral-mixing based illumination techniques.
  24. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Digital image capturing and processing system for automatically recognizing objects in a POS environment.
  25. Knowles, C. Harry; Zhu, Xiaoxun; Xian, Tao, Digital image capturing and processing system for producing and projecting a plurality of coextensive area-type illumination and imaging zones into a 3D imaging volume and controlling illumination control parameters in said system using the detected motion of objects present therewithin.
  26. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao, Digital-imaging based code symbol reading system employing a plurality of coplanar illumination and imaging subsystems, each having a local object motion detection subsystem for automatic detecting objects within the 3D imaging volume, and a local control subsystem for transmitting object detection state data to a global control subsystem for managing the state of operation of said coplanar illumination and imaging subsystems.
  27. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Hand-supportable digital image capture and processing system employing visible targeting illumination beam projected from an array of visible light sources on the rear surface of a printed circuit (PC) board having a light transmission aperture, and reflected off multiple folding mirrors and projected through the light transmission aperture into a central portion of the field of view of said system.
  28. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Laser beam despeckling devices.
  29. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Laser beam generation system employing a laser diode and high-frequency modulation circuitry mounted on a flexible circuit.
  30. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Laser illumination beam generation system employing despeckling of the laser beam using high-frequency modulation of the laser diode current and optical multiplexing of the component laser beams.
  31. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Method of blocking a portion of illumination rays generated by a countertop-supported digital imaging system, and preventing illumination rays from striking the eyes of the system operator or nearby consumers during operation of said countertop-supported digital image capture and processing system installed at a retail point of sale (POS) station.
  32. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Method of capturing and processing digital images of an object within the field of view (FOV) of a hand-supportable digitial image capture and processing system.
  33. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Method of driving a plurality of visible and invisible LEDs so as to produce an illumination beam having a dynamically managed ratio of visible to invisible (IR) spectral energy/power during object illumination and imaging operations.
  34. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Method of illuminating objects at a point of sale (POS) station by adaptively controlling the spectral composition of the wide-area illumination beam produced from an illumination subsystem within an automatic digital image capture and processing system.
  35. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Method of illuminating objects during digital image capture operations by mixing visible and invisible spectral illumination energy at point of sale (POS) environments.
  36. Smith, Taylor; Kotlarsky, Anatoly; Wilz, Sr., David M.; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Murashka, Pavel, Method of programming the system configuration parameters of a digital image capture and processing system during the implementation of its communication interface with a host system without reading programming-type bar code symbols.
  37. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Method of reading bar code symbols on objects at a point-of-sale station by passing said objects through a complex of stationary coplanar illumination and imaging planes projected into a 3D imaging volume.
  38. Kotlarsky, Anatoly; Au, Ka Man; Smith, Taylor; Mandal, Sudhin, Method of unlocking restricted extended classes of features and functionalities embodied within a digital image capture and processing system by reading feature/functionality-unlocking type code symbols.
  39. Manotas, Jr., J. Jay, Mid-infrared vehicle early warning system.
  40. Knowles, C. Harry; Good, Timothy; Zhu, Xiaoxun; Xian, Tao, Omni-directional digital image capturing and processing system employing coplanar illumination and imaging planes and area-type illumination and imaging zones with the horizontal and vertical sections of the system housing.
  41. Kotlarsky, Anatoly; Zhu, Xiaoxun; Veksland, Michael; Au, Ka Man; Giordano, Patrick; Yan, Weizhen; Ren, Jie; Smith, Taylor; Miraglia, Michael V.; Knowles, C. Harry; Mandal, Sudhin; De Foney, Shawn; Allen, Christopher; Wilz, Sr., David M., Optical scanning system having an extended programming mode and method of unlocking restricted extended classes of features and functionalities embodied therewithin.
  42. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, POS-based digital image capturing and processing system employing automatic object motion detection and spectral-mixing based illumination techniques.
  43. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, POS-based digital image capturing and processing system using automatic object detection, spectral-mixing based illumination and linear imaging techniques.
  44. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, POS-based digital image capturing and processing system using automatic object detection, spectral-mixing based illumination and linear imaging techniques.
  45. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John A.; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John A.; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Planar laser illumination module (PLIM) employing high-frequency modulation (HFM) of the laser drive currents and optical multplexing of the output laser beams.
  46. Knowles, C. Harry; Zhu, Xiaoxun; Good, Timothy; Xian, Tao; Kotlarsky, Anatoly; Veksland, Michael; Hernandez, Mark; Gardner, John; Essinger, Steven; Giordano, Patrick; Kearney, Sean; Schmidt, Mark; Furlong, John; Ciarlante, Nicholas; Liu, Yong; Ren, Jie; Tao, Xi; Liu, JiBin; Zhuo, Ming; Ellis, Duane, Pos-based digital image capturing and processing system using automatic object detection, spectral-mixing based illumination and linear imaging techniques.
  47. Briggance, William G., Vehicle vision system with rear mounted camera.
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로