최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
SAI
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
DataON 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
Edison 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
Kafe 바로가기국가/구분 | United States(US) Patent 등록 |
---|---|
국제특허분류(IPC7판) |
|
출원번호 | US-0186710 (2002-07-02) |
우선권정보 | GB-0026586 (2000-10-31); GB-0009772 (2002-04-29) |
발명자 / 주소 |
|
출원인 / 주소 |
|
대리인 / 주소 |
|
인용정보 | 피인용 횟수 : 596 인용 특허 : 16 |
An electrosurgical system has an electrosurgical generator and a bipolar electrosurgical instrument, the generator being arranged to perform a treatment cycle in which radio frequency energy is delivered to the instrument as an amplitude-modulated radio frequency power signal in the form of a succes
An electrosurgical system has an electrosurgical generator and a bipolar electrosurgical instrument, the generator being arranged to perform a treatment cycle in which radio frequency energy is delivered to the instrument as an amplitude-modulated radio frequency power signal in the form of a succession of pulses characterized by successive pulses of progressively increasing pulse width and progressively decreasing pulse amplitude. There are periods of at least 100 milliseconds between successive pulses, and the treatment cycle begins with a predetermined pulse mark-to-space ratio. Energy delivery between pulses is substantially zero. Each burst is of sufficiently high power to form vapor bubbles within tissue being treated and the time between successive pulses is sufficiently long to permit condensation of the vapor.
1. An electrosurgical generator comprising a source of radio frequency (r.f.) energy, at least a pair of output terminals for connection to a bipolar electrosurgical instrument and for delivering r.f. energy from the source to the instrument, and a pulsing circuit for the source, wherein the pulsing
1. An electrosurgical generator comprising a source of radio frequency (r.f.) energy, at least a pair of output terminals for connection to a bipolar electrosurgical instrument and for delivering r.f. energy from the source to the instrument, and a pulsing circuit for the source, wherein the pulsing circuit and the source are so arranged as to deliver into a resistive load, when connected across the output terminals, an amplitude-modulated r.f power signal in the form of a succession of pulses, which succession is characterised by successive pulses being of progressively decreasing power amplitude and of progressively increasing pulse width.2. A generator according to claim 1, wherein the increase in the pulse width of successive pulses is related to the decrease in amplitude.3. A generator according to claim 2, wherein the increase in pulse width and decrease in power amplitude is such that the energy delivered in each pulse is substantially fixed from pulse to pulse.4. A generator according to claim 1, including control circuitry including means for monitoring at least one electrical parameter associated with the output terminals, the decrease in the pulse amplitude and the increase in the pulse width being effected in response to the at least one electrical parameter.5. A generator according to claim 4, wherein the at least one parameter is the resistance of the load.6. A generator according to claim 4, wherein the generator includes circuitry for limiting the voltage applied to the load to a predetermined maximum value, and wherein the at least one parameter is the time from the start of the pulse for the voltage to reach the said predetermined maximum value.7. A generator according to claim 6, wherein the predetermined maximum voltage value is below 200V peak.8. A generator according to claim 1, wherein the pulse repetition rate is less than 1 Hz.9. A generator according to claim 1, characterised in that the pulses are separated by periods of at least 100 ms in which the delivered power is substantially zero.10. A generator according to claim 1, wherein the initial pulse width is in the range of from 25 ms to 750 ms.11. A generator according to claim 1, wherein the succession of pulses is terminated by a period of continuous energy delivery.12. A generator according to claim 11, wherein the period of continuous energy delivery is at least 1 second in duration.13. A generator according to claim 1, wherein the depth of amplitude modulation in the said r.f. signal is at least 90% and the initial pulse mark-to-space ratio is less than 2:3.14. A generator according to claim 1, arranged such that the pulsing frequency remains constant at a predetermined value over the major part of the said succession of pulses.15. A generator according to claim 1, arranged such that at least one of the initial pulse mark-to-space ratio, the initial pulse width, and the pulsing frequency is automatically preset at the start of the said succession of pulses to a value which is dependent on an instrument identification signal received by the generator.16. A generator according to claim 1, arranged such that at least one of the pulse mark-to-space ratio, the pulse width, and the pulsing frequency is automatically preset at the start of the said succession of pulses to a value which is dependent on the load resistance cross the output terminals at the said start.17. A generator according to claim 1, arranged so as to be capable of delivering a peak power of at least 100W into any resistive load connected across the generator output in the range of from 20 ohms to 250 ohms.18. An electrosurgical system comprising the combination of an electrosurgical generator as claimed in claim 1 and a bipolar electrosurgical instrument coupled to an output of the generator.19. A system according to claim 18, wherein the instrument comprises a pair of forceps.20. A system according to claim 18, wherein the instrument is removably connectible to the generator and includes an instrument identification element, and wherein the generator includes a sensing circuit for sensing the identification element, the pulsing circuit of the generator being arranged automatically to adjust the pulse width or mark-to-space ratio if the said succession of pulses in response to the identification element as sensed by the sensing circuit.21. A system according to claim 20, wherein the identification elements, the sensing circuit and/or the pulsing circuit are selected and configured to decrease the pulse frequency when an instrument with a comparatively large tissue contact area is selected.22. A system according to claim 20, comprising a plurality of bipolar electrosurgical forceps instruments which are selectively connectible to the generator and contain respective identification elements, wherein the electrodes of the instruments define different tissue contact areas, and wherein the respective identification elements, the sensing circuit and/or the pulsing circuit and selected and configured to set the said pulse width or mark-to-space ratio to a lower value for an instrument with electrodes defining a comparatively large tissue contact area to a higher value for an instrument with electrodes defining a comparatively small tissue contact area.23. An electrosurgical generator comprising a source of radio frequency (r.f.) energy, at least a pair of output terminals for connection to a bipolar electrosurgical instrument and for delivering r.f. energy from the source to the instrument, and a pulsing circuit for the source, wherein the pulsing circuit and the source are arranged such that the r.f. energy is delivered over a period of time constituting a treatment cycle in which, when a resistive load is connected across the output terminals, is delivered as an amplitude-modulated r.f. power signal in the form of a succession of pulses in which the periods between successive pulses are at least 300 ms, the depth of amplitude modulation is at least 90%, the pulse mark-to-space ratio increases progressively from a value less than 2:3 at the start of the treatment cycle, and the pulse repetition rate is less than 1 Hz, wherein a sensing circuit is arranged to detect an initial value of a load impedance associated with the start of the treatment cycle, and wherein the pulsing circuit is arranged such that the initial pulse mark-to-space ratio increases with increasing sensed initial load impedance.24. A method of electrosurgically coagulating tissue between the electrodes of a bipolar electrosurgical instrument, in which r.f energy is applied to the tissue via the electrodes in a succession of pulse bursts of progressively increasing length and progressively decreasing amplitude.25. A method according to claim 24, wherein the increase in length of successive bursts is related to the decrease in amplitude of those bursts.
해당 특허가 속한 카테고리에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
IPC | Description |
---|---|
A | 생활필수품 |
A62 | 인명구조; 소방(사다리 E06C) |
A62B | 인명구조용의 기구, 장치 또는 방법(특히 의료용에 사용되는 밸브 A61M 39/00; 특히 물에서 쓰이는 인명구조 장치 또는 방법 B63C 9/00; 잠수장비 B63C 11/00; 특히 항공기에 쓰는 것, 예. 낙하산, 투출좌석 B64D; 특히 광산에서 쓰이는 구조장치 E21F 11/00) |
A62B-1/08 | .. 윈치 또는 풀리에 제동기구가 있는 것 |
내보내기 구분 |
|
---|---|
구성항목 |
관리번호, 국가코드, 자료구분, 상태, 출원번호, 출원일자, 공개번호, 공개일자, 등록번호, 등록일자, 발명명칭(한글), 발명명칭(영문), 출원인(한글), 출원인(영문), 출원인코드, 대표IPC 관리번호, 국가코드, 자료구분, 상태, 출원번호, 출원일자, 공개번호, 공개일자, 공고번호, 공고일자, 등록번호, 등록일자, 발명명칭(한글), 발명명칭(영문), 출원인(한글), 출원인(영문), 출원인코드, 대표출원인, 출원인국적, 출원인주소, 발명자, 발명자E, 발명자코드, 발명자주소, 발명자 우편번호, 발명자국적, 대표IPC, IPC코드, 요약, 미국특허분류, 대리인주소, 대리인코드, 대리인(한글), 대리인(영문), 국제공개일자, 국제공개번호, 국제출원일자, 국제출원번호, 우선권, 우선권주장일, 우선권국가, 우선권출원번호, 원출원일자, 원출원번호, 지정국, Citing Patents, Cited Patents |
저장형식 |
|
메일정보 |
|
안내 |
총 건의 자료가 검색되었습니다. 다운받으실 자료의 인덱스를 입력하세요. (1-10,000) 검색결과의 순서대로 최대 10,000건 까지 다운로드가 가능합니다. 데이타가 많을 경우 속도가 느려질 수 있습니다.(최대 2~3분 소요) 다운로드 파일은 UTF-8 형태로 저장됩니다. ~ |
Copyright KISTI. All Rights Reserved.
AI-Helper는 오픈소스 모델을 사용합니다. 사용하고 있는 오픈소스 모델과 라이센스는 아래에서 확인할 수 있습니다.
AI-Helper uses Open Source Models. You can find the source code of these open source models, along with applicable license information below. (helpdesk@kisti.re.kr)
OpenAI의 API Key를 브라우저에 등록하여야 ChatGPT 모델을 사용할 수 있습니다.
등록키는 삭제 버튼을 누르거나, PDF 창을 닫으면 삭제됩니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.