최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
SAI
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
DataON 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
Edison 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
Kafe 바로가기국가/구분 | United States(US) Patent 등록 |
---|---|
국제특허분류(IPC7판) |
|
출원번호 | US-0984252 (2001-10-29) |
우선권정보 | GB-0026586 (2000-10-31) |
발명자 / 주소 |
|
출원인 / 주소 |
|
대리인 / 주소 |
|
인용정보 | 피인용 횟수 : 586 인용 특허 : 19 |
An electrosurgical system has an electrosurgical generator and a bipolar electrosurgical instrument, the generator being arranged to perform a treatment cycle in which radio frequency energy is delivered to the instrument as an amplitude-modulated radio frequency power signal in the form of a succes
An electrosurgical system has an electrosurgical generator and a bipolar electrosurgical instrument, the generator being arranged to perform a treatment cycle in which radio frequency energy is delivered to the instrument as an amplitude-modulated radio frequency power signal in the form of a succession of pulses characterized by periods of a least 100 milliseconds between successive pulses and by a predetermined pulse mark-to-space ratio. Energy delivery between pulses is substantially zero and the mark-to-space ratio is typically 1:4 or less. Each burst is of sufficiently high power to form vapor bubbles within tissue being treated and the time between successive pulses is sufficiently long to permit condensation of the vapor. The treatment cycles may each include an initial period and a subsequent period, the pulse duty cycle being increased or energy being delivered continuously in the subsequent period in order that tissue coagulation can be achieved quickly despite increasing tissue impedance.
1. An electrosurgical generator comprising:a source of radio frequency (r.f.) energy; at least a pair of output terminals for connection to a bipolar electrosurgical instrument and for delivering r.f. energy from the source to the instrument; and a pulsing circuit for the source, wherein the pulsing
1. An electrosurgical generator comprising:a source of radio frequency (r.f.) energy; at least a pair of output terminals for connection to a bipolar electrosurgical instrument and for delivering r.f. energy from the source to the instrument; and a pulsing circuit for the source, wherein the pulsing circuit and the source deliver into a resistive load, when connected across the output terminals, an amplitude-modulated r.f. power signal in the form of a succession of pulses, with periods of at least 100 ms between successive pulses and a predetermined pulse mark-to-space ratio, the pulse mark-to-space ratio remains constant at a predetermined value over the entire succession of pulses from a beginning of application of r.f. energy to an end of application of r.f. energy, the r.f. power signal being of sufficient power so as to effect the electrosurgical coagulation of tissue. 2. A generator according to claim 1, the depth of amplitude modulation in the said r.f. signal is at least 90% and the pulse mark-to-space ratio is less than 2:3.3. A generator according to claim 1, wherein the pulsing frequency remains constant at a predetermined value over the major part of the succession of pulses.4. A generator according to claim 1, wherein the pulse mark-to-space ratio and the pulsing frequency remain constant throughout the succession of pulses until the pulses are terminated.5. A generator according to claim 1, wherein at least one of the pulse mark-to-space ratio and the pulsing frequency is automatically preset at the start of the succession of pulses to a value which is dependent on an instrument identification signal received by the generator.6. A generator according to claim 1, wherein at least one of the pulse mark-to-space ratio and the pulsing frequency is automatically preset at the start of the succession of pulses to a value which is dependent on the load resistance across the output terminals at the start.7. A generator according to claim 1, wherein at least one of the pulse mark-to-space ratio and the pulsing frequency after the start of the succession of pulses is unaffected by the load resistance over at least the major part of a treatment period constituted by succession of pulses.8. An electrosurgical generator according to claim 1, wherein a peak power delivers at least 100W into any resistive load connected across the generator output in the range of from 20W to 250 W.9. An electrosurgical generator, comprising:a source of radio frequency (r.f.) energy; at least a pair of output terminals for connection to a bipolar electrosurgical instrument and for delivering r.f. energy from the source to the instrument; and a pulsing circuit for the source, wherein the pulsing circuit and the source deliver into a resistive load, when connected across the output terminals, an amplitude-modulated r.f. power signal in which the periods between successive pulses are at least 100 ms, the depth of amplitude modulation is at least 90% and a pulse mark-to-space ratio is less than 2:3, the pulse mark-to-space ratio remains constant at a predetermined value over the entire succession of pulses from a beginning of application of r.f. energy to an end of application of r.f. energy, the r.f. power signal being of sufficient power so as to effect the electrosurgical coagulation of tissue. 10. A generator according to claim 9, wherein the mark-to-space ratio is less than or equal to 1:3 over at least a load value range of 5W to 45W.11. A generator according to claim 9, wherein the mark-to-space ratio is less than or equal to 1:4 over at least a load value of 5W to 30W.12. A generator according to claim 9, wherein the r.f. current during each of a plurality of successive said pulses reaches at least 3 amps r.m.s when the load is 20W.13. A generator according to claim 9, wherein the pulse repetition rate is less than 1 Hz.14. A generator according to claim 13, wherein the pulsing circuit and the r.f. source generate a succession of treatment pulses of r.f. energy at the output terminals, the periods between successive such pulses being 1 s or longer.15. A generator according to claim 9, wherein the pulsing circuit and the r.f. source generate a succession of treatment pulses of r.f. energy at the output terminals, the periods between successive such pulses being 300 ms or longer.16. A generator according to claim 9, wherein the peak voltage of the said r.f. signal remains below 200V peak when a resistive load is connected across the output terminals.17. A generator according to claim 9, wherein any resistive load in the range of from 10W to 250W is connected to the output terminals, the r.f. energy delivered in each pulse is at least 2J.18. A generator according to claim 9, wherein the maximum value of the peak delivered power is delivered when the load resistance is less than 20W.19. A generator according to claim 18, wherein the maximum value of the peak delivered power is at least 200W.20. A generator according to claim 9, wherein the crest factor of the r.f. output voltage waveform during each pulse when delivering r.f. power is less than or equal to 1.5.21. A generator according to claim 9, wherein the pulsing circuit adjusts in response to a sensing circuit associated with the output terminals.22. A generator according to claim 21, wherein the sensing circuit is responsive to an identification element housed in an instrument connected to the output terminals.23. A generator according to claim 21, wherein the sensing circuit detects an initial value of a load impedance associated with the start of r.f. energy application.24. A generator according to claim 21, wherein the pulsing circuit adjusts the peak r.f. output power in response to the sensing circuit.25. A generator according to claim 24, wherein the pulsing circuit decreases the peak power with increasing sensed initial load impedance.26. A generator according to claim 21, wherein the pulsing circuit adjusts the pulsing frequency in response to the sensing circuit.27. A generator according to claim 26, wherein the pulsing circuit increases the pulse frequency with increasing sensed initial load impedance.
해당 특허가 속한 카테고리에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
IPC | Description |
---|---|
A | 생활필수품 |
A62 | 인명구조; 소방(사다리 E06C) |
A62B | 인명구조용의 기구, 장치 또는 방법(특히 의료용에 사용되는 밸브 A61M 39/00; 특히 물에서 쓰이는 인명구조 장치 또는 방법 B63C 9/00; 잠수장비 B63C 11/00; 특히 항공기에 쓰는 것, 예. 낙하산, 투출좌석 B64D; 특히 광산에서 쓰이는 구조장치 E21F 11/00) |
A62B-1/08 | .. 윈치 또는 풀리에 제동기구가 있는 것 |
내보내기 구분 |
|
---|---|
구성항목 |
관리번호, 국가코드, 자료구분, 상태, 출원번호, 출원일자, 공개번호, 공개일자, 등록번호, 등록일자, 발명명칭(한글), 발명명칭(영문), 출원인(한글), 출원인(영문), 출원인코드, 대표IPC 관리번호, 국가코드, 자료구분, 상태, 출원번호, 출원일자, 공개번호, 공개일자, 공고번호, 공고일자, 등록번호, 등록일자, 발명명칭(한글), 발명명칭(영문), 출원인(한글), 출원인(영문), 출원인코드, 대표출원인, 출원인국적, 출원인주소, 발명자, 발명자E, 발명자코드, 발명자주소, 발명자 우편번호, 발명자국적, 대표IPC, IPC코드, 요약, 미국특허분류, 대리인주소, 대리인코드, 대리인(한글), 대리인(영문), 국제공개일자, 국제공개번호, 국제출원일자, 국제출원번호, 우선권, 우선권주장일, 우선권국가, 우선권출원번호, 원출원일자, 원출원번호, 지정국, Citing Patents, Cited Patents |
저장형식 |
|
메일정보 |
|
안내 |
총 건의 자료가 검색되었습니다. 다운받으실 자료의 인덱스를 입력하세요. (1-10,000) 검색결과의 순서대로 최대 10,000건 까지 다운로드가 가능합니다. 데이타가 많을 경우 속도가 느려질 수 있습니다.(최대 2~3분 소요) 다운로드 파일은 UTF-8 형태로 저장됩니다. ~ |
Copyright KISTI. All Rights Reserved.
AI-Helper는 오픈소스 모델을 사용합니다. 사용하고 있는 오픈소스 모델과 라이센스는 아래에서 확인할 수 있습니다.
AI-Helper uses Open Source Models. You can find the source code of these open source models, along with applicable license information below. (helpdesk@kisti.re.kr)
OpenAI의 API Key를 브라우저에 등록하여야 ChatGPT 모델을 사용할 수 있습니다.
등록키는 삭제 버튼을 누르거나, PDF 창을 닫으면 삭제됩니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.