IPC분류정보
국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
US-0156363
(2002-05-28)
|
발명자
/ 주소 |
- Karabinis,Peter D.
- Churan,Gary G.
|
출원인 / 주소 |
|
대리인 / 주소 |
|
인용정보 |
피인용 횟수 :
70 인용 특허 :
20 |
초록
▼
Radiation by an ancillary terrestrial network, and/or satellite radiotelephones that communicate therewith are monitored and controlled, to reduce and preferably prevent intra-system interference and/or interference with other satellite radiotelephone systems. In particular, a satellite radiotelepho
Radiation by an ancillary terrestrial network, and/or satellite radiotelephones that communicate therewith are monitored and controlled, to reduce and preferably prevent intra-system interference and/or interference with other satellite radiotelephone systems. In particular, a satellite radiotelephone system includes a space-based component that is configured to wirelessly communicate with first radiotelephones in a satellite footprint over a satellite radiotelephone frequency band, and an ancillary terrestrial network that is configured to wirelessly communicate with second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band, to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band. Wireless radiation by the ancillary terrestrial network and/or the second radiotelephones at the space-based component is monitored, and the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones is adjusted in response to the monitoring. Intra-system interference and/or interference with other satellite systems thereby may be reduced or prevented.
대표청구항
▼
What is claimed is: 1. A satellite radiotelephone system comprising: a space-based component that is configured to wirelessly communicate with a plurality of first radiotelephones in a satellite footprint over a satellite radiotelephone frequency band; an ancillary terrestrial network that is confi
What is claimed is: 1. A satellite radiotelephone system comprising: a space-based component that is configured to wirelessly communicate with a plurality of first radiotelephones in a satellite footprint over a satellite radiotelephone frequency band; an ancillary terrestrial network that is configured to wirelessly communicate with a plurality of second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band; a monitor that is configured to monitor wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones at the space-based component; and a controller that is configured to adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitor. 2. A satellite radiotelephone system according to claim 1 wherein the monitor is further configured to monitor wireless radiation by the plurality of first radiotelephones at the space-based component and wherein the controller is further configured to adjust the radiation by the plurality of first radiotelephones in response to the monitor. 3. A satellite radiotelephone system according to claim 1 wherein the monitor is configured to monitor wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones of the at least some of the satellite radiotelephone frequency band that is terrestrially reused by the ancillary terrestrial network and/or the plurality of second radiotelephones. 4. A satellite radiotelephone system according to claim 1 wherein the space-based component is a first space-based component, in combination with: a second space-based component that is not configured to wirelessly communicate with the plurality of first or second radiotelephones and the ancillary terrestrial network but that may be subject to interference by the wireless radiation by the ancillary terrestrial network and/or the plurality of first or second radiotelephones; wherein the monitor is configured to monitor the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component; and wherein the controller is configured to adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component. 5. A satellite radiotelephone system according to claim 4 wherein the controller is configured to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitor determining that the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones may interfere with the second or first space-based component and to maintain or increase the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitor determining that the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones may not interfere with the second or first space-based component. 6. A satellite radiotelephone system according to claim 4 wherein the controller is configured to repeatedly adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to maximize the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones while preventing the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones from interfering with the second or first space-based component. 7. A satellite radiotelephone system according to claim 1 wherein the controller is configured to adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitor by controlling a number, geographic distribution, frequency distribution and/or power of the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones. 8. A satellite radiotelephone system according to claim 1 wherein the satellite footprint is divided into a plurality of satellite cells in which subsets of the satellite radiotelephone frequency band are spatially reused in a spatial reuse pattern, and wherein the monitor is configured to monitor wireless radiation, by the ancillary terrestrial network and/or the plurality of second radiotelephones in a predetermined satellite cell, of the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for ancillary terrestrial communications. 9. A satellite radiotelephone system according to claim 1 wherein the satellite footprint is divided into a plurality of satellite cells in which subsets of the satellite radiotelephone frequency band are spatially reused in a spatial reuse pattern, and wherein the monitor is configured to monitor wireless radiation, by the ancillary terrestrial network and/or the plurality of second radiotelephones in a predetermined satellite cell, of the satellite radiotelephone frequency band except for the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for satellite communications. 10. A satellite radiotelephone system according to claim 1 wherein the space-based component is configured to wirelessly receive communications from the plurality of first radiotelephones over an uplink and wherein the monitor is configured to identify signals from the ancillary terrestrial network and/or the plurality of second radiotelephones on the uplink. 11. A satellite radiotelephone system according to claim 10 wherein the monitor is configured to identify signals from the ancillary terrestrial network and/or the plurality of second radiotelephones that are received on the uplink in the presence of noise. 12. A satellite radiotelephone system according to claim 10 wherein the monitor is configured to identify signals from the ancillary terrestrial network and/or the plurality of second radiotelephones that are received on the uplink in the presence of noise by measuring received signal plus noise power spectral density of the signals that are received on the uplink at a plurality of frequencies in the satellite radiotelephone frequency band and obtaining a difference between selected ones of the plurality of frequencies. 13. A satellite radiotelephone system according to claim 8 further comprising: an interference reducer that is responsive to the space-based component and to the ancillary terrestrial network, and that is configured to reduce satellite communications interference resulting from the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in the predetermined satellite cell, over the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for both satellite and ancillary terrestrial communications. 14. A satellite radiotelephone system according to claim 13 wherein the monitor is configured to monitor an amount of interference that is reduced by the interference reducer to provide an indication of the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones. 15. A satellite radiotelephone system according to claim 1 wherein the controller is configured to cause at least one of the plurality of second radiotelephones to wirelessly communicate with the space-based component in response to the monitor. 16. A satellite radiotelephone system according to claim 1 wherein the controller is configured to select a vocoder rate of at least one of the plurality of second radiotelephones in response to the monitor. 17. A satellite radiotelephone system according to claim 1 wherein the monitor is configured to monitor wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over all of the satellite footprint and all of the satellite radiotelephone frequency band. 18. A satellite radiotelephone system according to claim 1 wherein the monitor is configured to monitor wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over only a portion of the satellite footprint and/or only a portion of the satellite radiotelephone frequency band, and to extrapolate the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over all of the satellite footprint and all of the satellite radiotelephone frequency band therefrom. 19. A satellite radiotelephone system according to claim 4 wherein the second space-based component is at a different elevation than the first space-based component and wherein the controller is further configured to adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component, based on the different elevation of the second space-based component. 20. A satellite radiotelephone system according to claim 1 wherein the monitor is configured to simulate interference by the ancillary terrestrial network and/or the plurality of second radiotelephones based on geographic locations and/or radiation levels thereof. 21. A satellite radiotelephone system according to claim 4 wherein the first and second space-based components are collocated at a single orbital slot. 22. A satellite radiotelephone system according to claim 1 wherein the ancillary terrestrial network comprises a plurality of ancillary terrestrial components that are configured to wirelessly communicate with the plurality of second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band; wherein the monitor is configured to monitor wireless radiation by the plurality of ancillary terrestrial components and/or the plurality of second radiotelephones at the space-based component; and wherein the controller is configured to adjust the radiation by the plurality of ancillary terrestrial components and/or the plurality of second radiotelephones in response to the monitor. 23. A satellite radiotelephone system according to claim 1 further comprising a gateway that is configured to communicate with the space-based component and with the ancillary terrestrial network, and wherein the monitor and the controller are at least partially included in the gateway. 24. A satellite radiotelephone system according to claim 1 further comprising a gateway that is configured to communicate with the space-based component and with the ancillary terrestrial network, wherein the monitor is at least partially included in the space-based component and wherein the controller is at least partially included in the gateway. 25. A satellite radiotelephone system according to claim 1 in combination with the plurality of first and second radiotelephones. 26. A system for reducing interference in a satellite radiotelephone system, the satellite radiotelephone system comprising a space-based component that is configured to wirelessly communicate with a plurality of first radiotelephones in a satellite footprint over a satellite radiotelephone frequency band and an ancillary terrestrial network that is configured to wirelessly communicate with a plurality of second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band, the interference reducing system comprising: a monitor that is configured to monitor wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones at the space-based component; and a controller that is configured to adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitor. 27. A system according to claim 26 wherein the monitor is further configured to monitor wireless radiation by the plurality of first radiotelephones at the space-based component and wherein the controller is further configured to adjust the radiation by the plurality of first radiotelephones in response to the monitor. 28. A system according to claim 26 wherein the monitor is configured to monitor wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones of the at least some of the satellite radiotelephone frequency band that is terrestrially reused by the ancillary terrestrial network and/or the plurality of second radiotelephones. 29. A system according to claim 26 wherein the space-based component is a first space-based component, in combination with a second space-based component that is not configured to wirelessly communicate with the plurality of first or second radiotelephones and the ancillary terrestrial network but that may be subject to interference by the wireless radiation by the ancillary terrestrial network and/or the plurality of first or second radiotelephones; wherein the monitor is configured to monitor the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component; and wherein the controller is configured to adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component. 30. A system according to claim 29 wherein the controller is configured to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitor determining that the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones may interfere with the second or first space-based component and to maintain or increase the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitor determining that the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones may not interfere with the second or first space-based component. 31. A system according to claim 29 wherein the controller is configured to repeatedly adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to maximize the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones while preventing the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones from interfering with the second or first space-based component. 32. A system according to claim 26 wherein the controller is configured to adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitor by controlling a number, geographic distribution, frequency distribution and/or power of the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones. 33. A system according to claim 26 wherein the satellite footprint is divided into a plurality of satellite cells in which subsets of the satellite radiotelephone frequency band are spatially reused in a spatial reuse pattern, and wherein the monitor is configured to monitor wireless radiation, by the ancillary terrestrial network and/or the plurality of second radiotelephones in a predetermined satellite cell, of the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for ancillary terrestrial communications. 34. A system according to claim 26 wherein the satellite footprint is divided into a plurality of satellite cells in which subsets of the satellite radiotelephone frequency band are spatially reused in a spatial reuse pattern, and wherein the monitor is configured to monitor wireless radiation, by the ancillary terrestrial network and/or the plurality of second radiotelephones in a predetermined satellite cell, of the satellite radiotelephone frequency band except for the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for satellite communications. 35. A system according to claim 26 wherein the space-based component is configured to wirelessly receive communications from the plurality of first radiotelephones over an uplink and wherein the monitor is configured to identify signals from the ancillary terrestrial network and/or the plurality of second radiotelephones on the uplink. 36. A system according to claim 35 wherein the monitor is configured to identify signals from the ancillary terrestrial network and/or the plurality of second radiotelephones that are received on the uplink in the presence of noise. 37. A system according to claim 35 wherein the monitor is configured to identify signals from the ancillary terrestrial network and/or the plurality of second radiotelephones that are received on the uplink in the presence of noise by measuring received signal plus noise power spectral density of the signals that are received on the uplink at a plurality of frequencies in the satellite radiotelephone frequency band and obtaining a difference between selected ones of the plurality of frequencies. 38. A system according to claim 33 further comprising: an interference reducer that is responsive to the space-based component and to the ancillary terrestrial network, and that is configured to reduce satellite communications interference resulting from the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in the predetermined satellite cell, over the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for both satellite and ancillary terrestrial communications. 39. A system according to claim 38 wherein the monitor is configured to monitor an amount of interference that is reduced by the interference reducer to provide an indication of the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones. 40. A system according to claim 26 wherein the controller is configured to cause at least one of the plurality of second radiotelephones to wirelessly communicate with the space-based component in response to the monitor. 41. A system according to claim 26 wherein the controller is configured to select a vocoder rate of at least one of the plurality of second radiotelephones in response to the monitor. 42. A system according to claim 26 wherein the monitor is configured to monitor wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over all of the satellite footprint and all of the satellite radiotelephone frequency band. 43. A system according to claim 26 wherein the monitor is configured to monitor wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over only a portion of the satellite footprint and/or only a portion of the satellite radiotelephone frequency band, and to extrapolate the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over all of the satellite footprint and all of the satellite radiotelephone frequency band therefrom. 44. A system according to claim 29 wherein the second space-based component is at a different elevation than the first space-based component and wherein the controller is further configured to adjust the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component, based on the different elevation of the second space-based component. 45. A system according to claim 26 wherein the monitor is configured to simulate interference by the ancillary terrestrial network and/or the plurality of second radiotelephones based on geographic locations and/or radiation levels thereof. 46. A system according to claim 26 wherein the ancillary terrestrial network comprises a plurality of ancillary terrestrial components that are configured to wirelessly communicate with the plurality of second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band; wherein the monitor is configured to monitor wireless radiation by the plurality of ancillary terrestrial components and/or the plurality of second radiotelephones at the space-based component; and wherein the controller is configured to adjust the radiation by the plurality of ancillary terrestrial components and/or the plurality of second radiotelephones in response to the monitor. 47. A system according to claim 26 further comprising a gateway that is configured to communicate with the space-based component and with the ancillary terrestrial network, and wherein the monitor and the controller are at least partially included in the gateway. 48. A system according to claim 26 further comprising a gateway that is configured to communicate with the space-based component and with the ancillary terrestrial network, wherein the monitor is at least partially included in the space-based component and wherein the controller is at least partially included in the gateway. 49. A system for reducing interference in a satellite radiotelephone system, the satellite radiotelephone system comprising a space-based component that is configured to wirelessly communicate with a plurality of first radiotelephones in a satellite footprint over a satellite radiotelephone frequency band and an ancillary terrestrial network that is configured to wirelessly communicate with a plurality of second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band, the interference reducing system comprising: means for monitoring wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones at the space-based component; and means for adjusting the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the means for monitoring. 50. A system according to claim 49 wherein the means for monitoring comprises means for monitoring wireless radiation by the plurality of first radiotelephones at the space-based component and wherein the means for adjusting comprises means for adjusting the radiation by the plurality of first radiotelephones in response to the means for monitoring. 51. A system according to claim 49 wherein the means for monitoring comprises means for monitoring wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones of the at least some of the satellite radiotelephone frequency band that is terrestrially reused by the ancillary terrestrial network and/or the plurality of second radiotelephones. 52. A system according to claim 49 wherein the space-based component is a first space-based component, in combination with a second space-based component that is not configured to wirelessly communicate with the plurality of first or second radiotelephones and the ancillary terrestrial network but that may be subject to interference by the wireless radiation by the ancillary terrestrial network and/or the plurality of first or second radiotelephones; wherein the means for monitoring comprises means for monitoring the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component; and wherein the means for adjusting comprises means for adjusting the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component. 53. A system according to claim 52 wherein the means for adjusting comprises: means for reducing the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the means for monitoring determining that the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones may interfere with the second or first space-based component; and means for maintaining or increasing the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the means for monitoring determining that the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones may not interfere with the second or first space-based component. 54. A system according to claim 52 wherein the means for adjusting comprises means for repeatedly adjusting the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to maximize the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones while preventing the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones from interfering with the second or first space-based component. 55. A system according to claim 49 wherein the means for adjusting comprises means for controlling a number, geographic distribution, frequency distribution and/or power of the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones. 56. A system according to claim 49 wherein the satellite footprint is divided into a plurality of satellite cells in which subsets of the satellite radiotelephone frequency band are spatially reused in a spatial reuse pattern, and wherein the means for monitoring comprises means for monitoring wireless radiation, by the ancillary terrestrial network and/or the plurality of second radiotelephones in a predetermined satellite cell, of the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for ancillary terrestrial communications. 57. A system according to claim 49 wherein the satellite footprint is divided into a plurality of satellite cells in which subsets of the satellite radiotelephone frequency band are spatially reused in a spatial reuse pattern, and wherein the means for monitoring comprises means for monitoring wireless radiation, by the ancillary terrestrial network and/or the plurality of second radiotelephones in a predetermined satellite cell, of the satellite radiotelephone frequency band except for the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for satellite communications. 58. A system according to claim 49 wherein the space-based component is configured to wirelessly receive communications from the plurality of first radiotelephones over an uplink and wherein the means for monitoring comprises means for identifying signals from the ancillary terrestrial network and/or the plurality of second radiotelephones on the uplink. 59. A system according to claim 58 wherein the means for monitoring comprises means for identifying signals from the ancillary terrestrial network and/or the plurality of second radiotelephones that are received on the uplink in the presence of noise. 60. A system according to claim 58 wherein the means for identifying comprises: means for measuring received signal plus noise power spectral density of the signals that are received on the uplink in the presence of noise at a plurality of frequencies in the satellite radiotelephone frequency band; and means for obtaining a difference between selected ones of the plurality of frequencies to reduce the effect of the noise. 61. A system according to claim 56 further comprising: means for reducing satellite communications interference resulting from the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in the predetermined satellite cell, over the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for both satellite and ancillary terrestrial communications. 62. A system according to claim 61 wherein the means for monitoring comprises means for monitoring an amount of interference that is reduced by the means for reducing to provide an indication of the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones. 63. A system according to claim 49 wherein the means for adjusting comprises means for causing at least one of the plurality of second radiotelephones to wirelessly communicate with the space-based component in response to the means for monitoring. 64. A system according to claim 49 wherein the means for adjusting comprises means for selecting a vocoder rate of at least one of the plurality of second radiotelephones in response to the means for monitoring. 65. A system according to claim 49 wherein the means for monitoring comprises means for monitoring wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over all of the satellite footprint and all of the satellite radiotelephone frequency band. 66. A system according to claim 49 wherein the means for monitoring comprises: means for monitoring wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over only a portion of the satellite footprint and/or only a portion of the satellite radiotelephone frequency band; and means for extrapolating the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over all of the satellite footprint and all of the satellite radiotelephone frequency band therefrom. 67. A system according to claim 52 wherein the second space-based component is at a different elevation than the first space-based component and wherein the means for adjusting comprises means for adjusting the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component, based on the different elevation of the second space-based component. 68. A system according to claim 49 wherein the means for monitoring comprises means for simulating interference by the ancillary terrestrial network and/or the plurality of second radiotelephones based on geographic locations and/or radiation levels thereof. 69. A system according to claim 49: wherein the ancillary terrestrial network comprises a plurality of ancillary terrestrial components that are configured to wirelessly communicate with the plurality of second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band; wherein the means for monitoring comprises means for monitoring wireless radiation by the plurality of ancillary terrestrial components and/or the plurality of second radiotelephones at the space-based component; and wherein the means for adjusting comprises means for adjusting the radiation by the plurality of ancillary terrestrial components and/or the plurality of second radiotelephones in response to the means for monitoring. 70. A system according to claim 49 further comprising a gateway that is configured to communicate with the space-based component and with the ancillary terrestrial network, and wherein the means for monitoring and the means for adjusting are at least partially included in the gateway. 71. A system according to claim 49 further comprising a gateway that is configured to communicate with the space-based component and with the ancillary terrestrial network, wherein the means for monitoring is at least partially included in the space-based component and wherein means for adjusting is at least partially included in the gateway. 72. A method for reducing interference in a satellite radiotelephone system, the satellite radiotelephone system comprising a space-based component that is configured to wirelessly communicate with a plurality of first radiotelephones in a satellite footprint over a satellite radiotelephone frequency band and an ancillary terrestrial network that is configured to wirelessly communicate with a plurality of second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band, the interference reducing method comprising: monitoring wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones at the space-based component; and adjusting the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitoring. 73. A method according to claim 72 wherein the monitoring comprises monitoring wireless radiation by the plurality of first radiotelephones at the space-based component and wherein the adjusting comprises adjusting the radiation by the plurality of first radiotelephones in response to the monitoring. 74. A method according to claim 72 wherein the monitoring comprises monitoring wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones of the at least some of the satellite radiotelephone frequency band that is terrestrially reused by the ancillary terrestrial network and/or the plurality of second radiotelephones. 75. A method according to claim 72: wherein the space-based component is a first space-based component, in combination with a second space-based component that is not configured to wirelessly communicate with the plurality of first or second radiotelephones and the ancillary terrestrial network but that may be subject to interference by the wireless radiation by the ancillary terrestrial network and/or the plurality of first or second radiotelephones; wherein the monitoring comprises monitoring the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component; and wherein the adjusting comprises adjusting the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component. 76. A method according to claim 75 wherein the monitoring comprises: reducing the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitoring determining that the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones may interfere with the second or first space-based component; and maintaining or increasing the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in response to the monitoring determining that the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones may not interfere with the second or first space-based component. 77. A method according to claim 75 wherein the adjusting comprises repeatedly adjusting the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to maximize the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones while preventing the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones from interfering with the second or first space-based component. 78. A method according to claim 72 wherein the adjusting comprises controlling a number, geographic distribution, frequency distribution and/or power of the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones. 79. A method according to claim 72 wherein the satellite footprint is divided into a plurality of satellite cells in which subsets of the satellite radiotelephone frequency band are spatially reused in a spatial reuse pattern, and wherein the monitoring comprises monitoring wireless radiation, by the ancillary terrestrial network and/or the plurality of second radiotelephones in a predetermined satellite cell, of the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for ancillary terrestrial communications. 80. A method according to claim 72 wherein the satellite footprint is divided into a plurality of satellite cells in which subsets of the satellite radiotelephone frequency band are spatially reused in a spatial reuse pattern, and wherein the monitoring comprises monitoring wireless radiation, by the ancillary terrestrial network and/or the plurality of second radiotelephones in a predetermined satellite cell, of the satellite radiotelephone frequency band except for the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for satellite communications. 81. A method according to claim 72 wherein the space-based component is configured to wirelessly receive communications from the plurality of first radiotelephones over an uplink and wherein the monitoring comprises identifying signals from the ancillary terrestrial network and/or the plurality of second radiotelephones on the uplink. 82. A method according to claim 81 wherein the identifying comprises identifying signals from the ancillary terrestrial network and/or the plurality of second radiotelephones that are received on the uplink in the presence of noise. 83. A method according to claim 81 wherein the identifying comprises: measuring received signal plus noise power spectral density of the signals that are received on the uplink at a plurality of frequencies in the satellite radiotelephone frequency band; and obtaining a difference between selected ones of the plurality of frequencies. 84. A method according to claim 79 further comprising: reducing satellite communications interference resulting from the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones in the predetermined satellite cell, over the subset of the satellite radiotelephone frequency band that is used in the predetermined satellite cell for both satellite and ancillary terrestrial communications. 85. A method according to claim 84 wherein the monitoring comprises monitoring an amount of interference that is reduced by the reducing to provide an indication of the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones. 86. A method according to claim 72 wherein the adjusting comprises causing at least one of the plurality of second radiotelephones to wirelessly communicate with the space-based component in response to the monitoring. 87. A method according to claim 72 wherein the adjusting comprises selecting a vocoder rate of at least one of the plurality of second radiotelephones in response to the monitoring. 88. A method according to claim 72 wherein the monitoring comprises monitoring wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over all of the satellite footprint and all of the satellite radiotelephone frequency band. 89. A method according to claim 72 wherein the monitoring comprises: monitoring wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over only a portion of the satellite footprint and/or only a portion of the satellite radiotelephone frequency band; and extrapolating the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones over all of the satellite footprint and all of the satellite radiotelephone frequency band therefrom. 90. A method according to claim 75 wherein the second space-based component is at a different elevation than the first space-based component and wherein the adjusting comprises adjusting the radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones to reduce the wireless radiation by the ancillary terrestrial network and/or the plurality of second radiotelephones that may interfere with the second or first space-based component, based on the different elevation of the second space-based component. 91. A method according to claim 72 wherein the monitoring comprises simulating interference by the ancillary terrestrial network and/or the plurality of second radiotelephones based on geographic locations and/or radiation levels thereof. 92. A method according to claim 72: wherein the ancillary terrestrial network comprises a plurality of ancillary terrestrial components that are configured to wirelessly communicate with the plurality of second radiotelephones in the satellite footprint over at least some of the satellite radiotelephone frequency band to thereby terrestrially reuse the at least some of the satellite radiotelephone frequency band; wherein the monitoring comprises monitoring wireless radiation by the plurality of ancillary terrestrial components and/or the plurality of second radiotelephones at the space-based component; and wherein adjusting comprises adjusting the radiation by the plurality of ancillary terrestrial components and/or the plurality of second radiotelephones in response to the monitoring. 93. A method according to claim 72 further comprising a gateway that is configured to communicate with the space-based component and with the ancillary terrestrial network, and wherein the monitoring and the controlling are at least partially performed in the gateway. 94. A method according to claim 72 further comprising a gateway that is configured to communicate with the space-based component and with the ancillary terrestrial network, wherein the monitoring is at least partially performed in the space-based component and wherein the adjusting is at least partially performed in the gateway.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.