An interactive system for controlling the operation of an HVAC system is provide that comprises a thermostat for initiating the operation of the HVAC system in either a full capacity mode of operation or at least one reduced capacity mode of operation, and a controller for an outside condenser unit
An interactive system for controlling the operation of an HVAC system is provide that comprises a thermostat for initiating the operation of the HVAC system in either a full capacity mode of operation or at least one reduced capacity mode of operation, and a controller for an outside condenser unit having a condenser fan motor and a compressor motor, the controller being capable of operating the compressor in a full capacity mode and at least one reduced capacity mode. The system also comprises a controller for an indoor blower unit having a blower fan motor, the controller being capable of operating the blower fan motor in a full capacity mode an at least one reduced capacity mode. The system further includes a communication means for transmitting information between the outside condenser unit controller and at least the indoor blower controller, where the information relates to the operation of the indoor blower and the outdoor condenser unit. The indoor blower controller responsively controls the operation of the blower fan motor in a full capacity mode or a reduced capacity mode based on the information received from the outdoor unit controller, and the outdoor unit controller responsively controls the operation of the compressor in a full capacity mode or a reduced capacity mode based on the information received from the indoor blower controller.
대표청구항▼
What is claimed is: 1. An interactive system for controlling the operation of an HVAC system, the interactive system comprising: a thermostat configured to transmit signals to request the operation of the HVAC system in either a full capacity mode, or a mid-capacity mode of operation that provides
What is claimed is: 1. An interactive system for controlling the operation of an HVAC system, the interactive system comprising: a thermostat configured to transmit signals to request the operation of the HVAC system in either a full capacity mode, or a mid-capacity mode of operation that provides at least some degree of cooling operation; an outdoor condenser unit having a condenser fan motor and a compressor motor, a solenoid for switching the compressor to a mid-capacity mode of operation, and an outdoor condenser unit controller in connection with the compressor motor and solenoid, the outdoor condenser unit controller being configured to receive request signals from the thermostat and to activate the compressor in a full capacity mode or activate the solenoid to switch the compressor to a mid-capacity mode or operation, the outdoor condenser unit controller being further configured to detect when a solenoid fault has caused the compressor to be inoperable at mid-capacity and to responsively communicate a signal indicating that the compressor is inoperable at mid-capacity and is being switched to full-capacity operation, regardless of whether the thermostat is requesting mid-capacity cooling operation; an indoor blower unit having a blower fan motor, and a controller for the indoor blower unit in connection with the blower fan motor, the indoor blower unit controller being capable of operating the blower fan motor in a full speed mode and a low speed mode; a multi-wire network in connection with the thermostat, outdoor condenser unit controller, and indoor blower unit controller, for transmitting information between the outdoor condenser unit controller and the indoor blower controller relating to the operation of the indoor blower and the outdoor condenser unit, wherein the indoor blower controller responsively controls the operation of the blower fan motor at full speed, regardless of whether the thermostat is requesting low speed, based on information received from the outdoor condenser unit controller indicating that the compressor is not operable in mid-capacity mode of operation. 2. The system of claim 1 where in response to the outdoor unit controller communicating operating information of the compressor being inoperable at full capacity and switched to mid-capacity, the indoor blower controller responsively controls the operation of the blower motor at low blower speed corresponding to the mid-capacity mode of operating the compressor, to provide at least some degree of cooling operation while the thermostat is transmitting a signal requesting full capacity operation of the compressor and blower. 3. The system of claim 2, wherein the multi-wire network comprises a peer-to-peer network connection that enables receiving information from at least an indoor blower controller and sending information to at least an indoor blower controller. 4. The system of claim 2, wherein the outdoor condenser unit controller is further configured to communicate a signal to the thermostat indicating the information of the compressor being inoperable at full-capacity, which the thermostat responsively displays the information on a display device. 5. An interactive system for controlling the operation of an HVAC system, the interactive system comprising: a thermostat configured to transmit signals to request signals to request the operation of the HVAC system in either a full capacity mode, or a mid-capacity mode that provides at least some degree of cooling operation; an outdoor condenser unit having a condenser fan motor, a compressor, a solenoid for switching the compressor to a mid-capacity mode, and an outdoor condenser unit controller in connection with the compressor motor and the solenoid, the outdoor condenser unit controller being configured to receive request signals from the thermostat and to activate the compressor for operating the compressor at full capacity or to activate the solenoid to switch the compressor to mid-capacity operation; an indoor blower unit having a blower fan motor, and a controller for the indoor blower unit in connection with the blower fan motor, the indoor blower controller being configured to operate the blower fan motor at full speed and at a low speed, the indoor blower unit controller being further configured to detect when a fault condition has rendered the blower motor inoperable at full speed, and to responsively switch the blower motor to low speed that provides at least some degree of cooling operation, and to communicate a signal indicating that the blower is inoperable at full speed; a multi-wire network in connection with the thermostat, outdoor condenser unit controller, and indoor blower unit controller, for enabling communication of information by the outdoor condenser unit controller and the indoor blower controller relating to the operation of the indoor blower and the outdoor condenser unit, where in response to the indoor blower controller communicating operating information of the blower fan motor being inoperable at full speed and switched to a low speed, the outdoor condenser unit controller responsively activates the solenoid to switch the operation of the compressor to mid-capacity mode of operation, regardless of whether the thermostat is requesting full capacity operation. 6. The system of claim 5 further comprising a current sensor for sensing a current of the indoor blower motor, wherein the controller operates the blower at a reduced capacity mode of operation when a sensed blower motor current is indicative of an overheating condition of a component of the blower motor. 7. The system of claim 6, wherein the multi-wire network comprises a peer-to-peer network connection that enables receiving information from at least an indoor blower controller and sending information to at least an indoor blower controller. 8. The system of claim 6, wherein the outdoor condenser unit controller is further configured to communicate a signal to the thermostat indicating the information of the compressor being inoperable at full-capacity, which the thermostat responsively displays the information on a display device. 9. An interactive system for controlling the operation of an HVAC system, the interactive system comprising: a thermostat configured to transmit signals to request the operation of the HVAC system in either a full capacity mode or a mid-capacity mode that provides at least some degree of cooling operation; an outdoor condenser unit having a condenser fan motor, a compressor motor, a sensor for sensing a compressor motor current, a solenoid for switching the compressor to a mid-capacity mode that provides at least some degree of cooling operation, and an outdoor condenser unit controller configured to receive request signals from the thermostat and to activate the compressor for operating the compressor at full capacity or activate the solenoid to switch the compressor to mid-capacity operation, the outdoor condenser unit controller being configured to monitor the sensor to detect a sensed compressor motor current indicative of an excessively high compressor pressure, and to responsively activate the solenoid for switching the compressor to mid-capacity and communicate a signal indicating that the compressor is inoperable at full capacity and switched to mid-capacity operation; an indoor blower unit having a blower fan motor, and a controller for the indoor blower unit in connection with the blower fan motor, the indoor blower controller being configured to operate the blower fan motor at full blower speed and at a low blower speed; a multi-wire network in connection with the thermostat, outdoor condenser unit controller, and indoor blower unit controller, for enabling communication of information by the outdoor condenser unit controller and the indoor blower controller relating to the operation of the indoor blower and the outdoor condenser unit, where in response to the outdoor condenser unit controller communicating operating information of the compressor being inoperable at full capacity and switched to mid-capacity, the indoor blower controller responsively controls the operation of the blower motor at a low speed to provide at least some degree of cooling operation corresponding to the mid-capacity mode of operating the compressor, regardless of whether the thermostat is requesting full capacity operation. 10. The system of claim 9 wherein the outdoor condenser unit controller responsively activates the solenoid to switch the operation of the compressor to mid-capacity mode of operation when the sensed compressor motor current remains above a predetermined level for at least a predetermined time period. 11. The system of claim 10, wherein the multi-wire network comprises a peer-to-peer network connection that enables receiving information from at least an indoor blower controller and sending information to at least an indoor blower controller. 12. The system of claim 10, wherein the outdoor condenser unit controller is further configured to communicate a signal to the thermostat indicating the information of the compressor being inoperable at full-capacity, which the thermostat responsively displays the information on a display device. 13. The system of claim 9, further comprising a second sensor in communication with the outdoor condenser unit controller that is capable of sensing the voltage to the compressor motor, wherein the outdoor condenser unit controller is configured to detect a sensed voltage to the compressor motor that is below a rated operating voltage of the compressor motor and indicative of a low line voltage condition, and to responsively activate the solenoid to switch the compressor to mid-capacity and to communicate a signal indicating that the compressor is inoperable at full capacity and switched to mid-capacity operation to provide at least some degree of cooling operation during the time the low-voltage condition is sensed. 14. The system of claim 13, wherein the outdoor condenser unit controller is further configured to communicate a signal to the thermostat indicating the information of the compressor being inoperable at full-capacity due to a low voltage condition, which the thermostat responsively displays the information on a display device. 15. An interactive system for controlling the operation of an HVAC system, the interactive system comprising: a thermostat for initiating the operation of the HVAG system in either a full capacity mode or at least one reduced capacity mode of operation; a controller for an outside condenser unit having a condenser fan motor and a compressor motor, the outside condenser unit controller being capable of operating the compressor in a full capacity mode and at least one reduced capacity mode; a controller for an indoor blower unit having a blower fan motor, the indoor blower unit controller being capable of operating the blower fan motor in a full capacity mode and at least one reduced capacity mode; a communication means for transmitting information between the outside condenser unit controller and the indoor blower controller relating to the operation of the indoor blower and the outdoor condenser unit, wherein the indoor blower controller responsively controls the operation of the blower fan motor in a full capacity mode or a reduced capacity mode based on information received from the outdoor unit controller; and a controller for a furnace unit having a high stage and at least one low stage of heating operation, where in response to the indoor blower controller communicating operating information of a reduced blower speed, the furnace controller responsively controls the operation of the furnace in at least one low stage of heating operation. 16. An interactive system for controlling the operation of a cooling system having at least a controller for an indoor blower and at least a controller for an outdoor condenser unit, where the controllers are in communication with each other through a multi-wire network, the system comprising: a thermostat configured to transmit signals to request the operation of the HVAC system in either a full capacity mode or a mid-capacity mode that provides at least some degree of cooling operation; an outdoor condenser unit having a condenser fan motor, a compressor motor, a solenoid for switching the compressor to a mid-capacity mode, a current sensor capable of sensing a low compressor motor current indicative of a low refrigerant charge; an outdoor condenser unit controller in connection with the compressor motor, solenoid, and current sensor, where in response to the controller detecting a low compressor motor current indicative of a low refrigerant charge, the outdoor condenser unit controller responsively communicates a signal via the network indicating a possible low refrigerant charge condition; an indoor blower unit having a blower fan motor, and a controller for the indoor blower unit configured to control operation of the blower fan motor and to receive information through the network, the indoor blower controller being further configured to operate the blower fan motor at full blower speed and at a low blower speed, where in response to detecting the signal indicating a possible low refrigerant charge, the indoor blower controller is configured for determining a sensed temperature difference across the air conditioning coil that is indicative of a low refrigerant charge, and sending information relating to the operation of the indoor blower and sensed temperature difference information; wherein the outdoor condenser unit controller and the indoor blower controller are each capable of receiving operating diagnostic information indicating a low refrigerant charge from each other and responsively confirming received diagnostic information with internal information indicating a low refrigerant charge, to provide notification to the thermostat of a cooling system low refrigerant charge condition or fault that requires service. 17. The system of claim 16 wherein the indoor blower unit further comprises a first temperature sensor for sensing the return air temperature for the blower, a second temperature sensor for sensing the supply air temperature leaving the blower, wherein the indoor blower unit controller responsively communicates a signal indicating a low refrigerant charge condition when the indoor blower unit controller senses a difference between the sensed return air temperature and the sensed supply air temperature that is less than a predetermined amount. 18. The system of claim 17, where upon receiving the communication of information indicating a low refrigerant charge from each of the indoor blower unit controller and outdoor condenser unit controller, the thermostat responsively displays the information of a low refrigerant charge that requires service. 19. The system of claim 18, wherein the multi-wire network comprises a peer-to-peer network connection that enables receiving information from at least an indoor blower controller and sending information to at least an indoor blower controller. 20. The system of claim 18, wherein the outdoor condenser unit controller is further configured to communicate a signal to the thermostat indicating the information of the compressor being inoperable at mid-capacity, which the thermostat responsively displays the information on a display device.
연구과제 타임라인
LOADING...
LOADING...
LOADING...
LOADING...
LOADING...
이 특허에 인용된 특허 (5)
Jayanth, Nagaraj; Millet, Hank E., Compressor diagnostic system.
Blair John H. (Westland MI) Dolinski Norman H. (Grosse Pointe Woods MI) Dage Gerhard A. (Franklin MI) Peck George E. (Dearborn MI) Koberstein Manfred (Warren MI) Matteson Robert W. (Ann Arbor MI), Low refrigerant charge detection system.
Hoglund Steven R. (Edina MN) Ober Kerry E. (Minnetonka MN) Zumsteg Philip J. (Shorewood MN) Tuten ; III James M. (Columbus OH) Harnish James R. (York PA) Goetz Jay R. (Minnetonka MN), Microprocessor-based controller.
Curry, Jimmie; Jennings, Jacob; Grohman, Wojciech, Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network.
Grohman, Wojciech; Filbeck, Amanda, Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network.
Hadzidedic, Darko; Wallaert, Timothy E.; Powell, Joe, Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network.
Grohman, Wojciech; Hadzidedic, Darko; Filbeck, Amanda; Wallaert, Timothy E., Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network.
Grohman, Wojciech; Hadzidedic, Darko; Filbeck, Amanda; Wallaert, Timothy E.; Thorson, Timothy H.; Pavlak, Thomas Gerard; Jennings, Jacob, Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network.
Grohman, Wojciech; Filbeck, Amanda, Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network.
Grohman, Wojciech; Hadzidedic, Darko, Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network.
Grohman, Wojciech; Hadzidedic, Darko; Sullivan, Daniel, Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network.
Wallaert, Timothy E.; Grohman, Wojciech, Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network.
Grohman, Wojciech; Filbeck, Amanda, Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system.
Hadzidedic, Darko; Grohman, Wojciech, Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system.
Grohman, Wojciech; Hadzidedic, Darko, Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system.
Grohman, Wojciech; Jennings, Jacob; Filbeck, Amanda, Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system.
Wallaert, Timothy; Thorson, Timothy H.; Pavlak, Thomas G., Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system.
Grohman, Wojciech; Hadzidedic, Darko; Thorson, Timothy H.; Mirza, Muhammad Ali; Kailani, Ammar; Wallaert, Timothy E., General control techniques in a heating, ventilation and air conditioning network.
Leise, William C.; Broker, John F.; Jaeschke, Horst E.; Lorenz, Thomas B.; Pawar, Harshal M., HVAC controls or controllers including alphanumeric displays and push buttons.
Chen, Jie; Reifel, Allan J.; Koesterer, David L.; Weigl, Siegfried J., Heat pumps with unequal cooling and heating capacities for climates where demand for cooling and heating are unequal, and method of adapting and distributing such heat pumps.
Chen, Jie; Reifel, Allan J.; Koesterer, David L.; Weigl, Siegfried J., Heat pumps with unequal cooling and heating capacities for climates where demand for cooling and heating are unequal, and method of adapting and distributing such heat pumps.
Grohman, Wojciech; Hadzidedic, Darko; Nanjundeshaiah, Kamala Kodihally; Courtney, Michael, Method of controlling equipment in a heating, ventilation and air conditioning network.
Sinha, Sudhi; Ribbich, Joseph R.; Ribbich, Michael L.; Gaidish, Charles J.; Cipolla, John P., Multi-function thermostat with emergency direction features.
Grohman, Wojciech; Filbeck, Amanda; Wallaert, Timothy E., System and method for zoning a distributed architecture heating, ventilation and air conditioning network.
Filbeck, Amanda; Wallaert, Timothy E.; Thorson, Timothy H., System and method for zoning a distributed-architecture heating, ventilation and air conditioning network.
Devineni, Suresh Kumar; Wallaert, Timothy; Mirza, Muhammad Ali; Pavlak, Thomas Gerald; Thorson, Timothy H., System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network.
Filbeck, Amanda; Spencer, Christopher W.; Stanbouly, Souhel H.; Thorson, Timothy H., System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network.
Jennings, Jacob; Pavlak, Thomas Gerald; Filbeck, Amanda; Spencer, Christopher W., System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network.
Mirza, Muhammad Ali; Jennings, Jacob; Filbeck, Amanda, System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network.
Mirza, Muhammad Ali; Thorson, Timothy H., System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network.
Pavlak, Thomas Gerard; Jennings, Jacob, System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network.
Pavlak, Thomas Gerard; Wallaert, Timothy; Thorson, Timothy H., System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network.
Wallaert, Timothy E.; Pavlak, Thomas G.; Thorson, Timothy H.; Mirza, Muhammad Ali; Devineni, Suresh Kumar, System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network.
Wallaert, Timothy; Thorson, Timothy H.; Jennings, Jacob, System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network.
Butler, William P.; Evans, Edward B.; Lorenz, Thomas B.; Mueller, Carl J.; Carey, Steven L.; Vogel, G. Scott, Universal apparatus and method for configurably controlling a heating or cooling system.
Butler, William P.; Evans, Edward B.; Lorenz, Thomas B.; Mueller, Carl J.; Carey, Steven L.; Vogel, G. Scott, Universal apparatus and method for configurably controlling a heating or cooling system.
Ribbich, Joseph R.; Diptee, Vinosh C.; Abdala, Juilio A.; Ribeiro, Claudio Santiago; Gaidish, Charles J.; Kornacki, Michael F.; Cipolla, John P.; Sinha, Sudhi; Ribbich, Michael L., User control device with cantilevered display.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.