IPC분류정보
국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
US-0375425
(2006-03-14)
|
등록번호 |
US-7308805
(2007-12-18)
|
발명자
/ 주소 |
|
출원인 / 주소 |
- Air Products and Chemicals, Inc.
|
인용정보 |
피인용 횟수 :
1 인용 특허 :
13 |
초록
▼
Method gas liquefaction which comprises cooling a feed gas stream successively through at least two heat exchange zones, wherein cooling is provided by respective vaporizing refrigerants, and wherein the refrigerant in the coldest temperature range is only partially vaporized in the coldest heat exc
Method gas liquefaction which comprises cooling a feed gas stream successively through at least two heat exchange zones, wherein cooling is provided by respective vaporizing refrigerants, and wherein the refrigerant in the coldest temperature range is only partially vaporized in the coldest heat exchange zone and then is vaporized in a further heat exchange zone at temperatures above the highest temperature of the coldest heat exchange zone to form a totally vaporized refrigerant. The totally vaporized refrigerant is compressed to yield a compressed refrigerant stream, and the entire compressed refrigerant stream is either (i) cooled by indirect heat exchange in the further heat exchange zone, thereby providing self-refrigeration for the recirculating refrigeration process, or (ii) cooled in a heat exchange zone preceding the coldest heat exchange zone by indirect heat exchange with a respective vaporizing refrigerant and then further cooled the in the further heat exchange zone.
대표청구항
▼
The invention claimed is: 1. A method for liquefying a gas (1) which comprises cooling a feed gas stream successively through at least two heat exchange zones (310, 311, 312; 353) at respective temperature ranges to provide a liquefied product (13), wherein refrigeration for cooling the feed gas st
The invention claimed is: 1. A method for liquefying a gas (1) which comprises cooling a feed gas stream successively through at least two heat exchange zones (310, 311, 312; 353) at respective temperature ranges to provide a liquefied product (13), wherein refrigeration for cooling the feed gas stream in the temperature ranges is provided by respective vaporizing refrigerants (117, 213, 315), wherein the refrigerant (315) in the coldest temperature range is only partially vaporized in the coldest heat exchange zone (312) to form a partially vaporized refrigerant (316), and wherein the refrigerant is recirculated in a recirculating refrigeration process that comprises further vaporizing the partially vaporized refrigerant (316) in a further heat exchange zone (317, 355) at temperatures above the highest temperature of the coldest heat exchange zone (312) to form a totally vaporized refrigerant (318, 348), compressing (319, 324; 349) the totally vaporized refrigerant (318, 348) to yield a compressed refrigerant stream, and cooling the compressed refrigerant stream to provide a coldest refrigerant (315), characterized in that the entire compressed refrigerant stream is cooled by either (i) cooling the entire compressed refrigerant stream (328) in the further heat exchange zone (317) by indirect heat exchange with the further vaporizing partially vaporized refrigerant (316) to provide a cooled refrigerant stream (329), thereby providing self-refrigeration for the recirculating refrigeration process, and then by further cooling (312) the cooled refrigerant stream (329) to provide the coldest refrigerant (315), or (ii) cooling the entire compressed refrigerant stream (351) in a heat exchange zone (353) preceding the coldest heat exchange zone (312) by indirect heat exchange (352) with a respective vaporizing refrigerant (117), further cooling the refrigerant in the further heat exchange zone (355) by indirect heat exchange with the partially vaporized refrigerant (316) to provide a cooled refrigerant stream (329), and then further cooling (312) the cooled refrigerant stream (329) to provide the coldest refrigerant (315). 2. A method of claim 1 wherein the feed gas stream (1) is natural gas. 3. A method of claim 1 or claim 2 wherein the refrigerant (315, 316, 318, 328, 329) in the recirculating refrigeration process is a multicomponent mixture comprising nitrogen, i-pentane, and n-pentane with the molar ratio of i-pentane to n-pentane in the refrigerant (315, 316, 318, 328, 329) being greater than one, and wherein the i-pentane and n-pentane are obtained from the feed gas stream (1) and the molar ratio of i-pentane to n-pentane in the refrigerant (315, 316, 318, 328, 329) is greater than the molar ratio of i-pentane to n-pentane in the feed gas stream (1). 4. A method of claim 1 or claim 2, wherein the refrigerant (315, 316, 318, 328, 329) in the recirculating refrigeration process is a multicomponent mixture comprising nitrogen, i-pentane, and one or more hydrocarbons having four carbon atoms, the i-pentane and the one or more hydrocarbons having four carbon atoms being obtained from the feed gas stream (1), and the molar ratio of i-pentane to n-pentane in the refrigerant (315, 316, 318, 328, 329) being greater than one, wherein the i-pentane and n-pentane are obtained from the feed gas stream (1) and the molar ratio of i-pentane to the one or more hydrocarbons having four carbon atoms in the refrigerant (315, 316, 318, 328, 329) is greater than the molar ratio of i-pentane to the one or more hydrocarbons having four carbon atoms in the feed gas stream (1). 5. A method of claim 1 or claim 2 wherein the refrigerant (315, 316, 318, 328, 329) in the recirculating refrigeration process comprises (in mole %) 5-15% nitrogen, 30-60% methane, 10-30% ethane, 0-10% propane, and 5-15% i-pentane. 6. A method of claim 1, wherein the further cooling of the cooled refrigerant stream (329) is effected by indirect heat exchange with the coldest refrigerant (315) vaporizing in the coldest heat exchange zone (312). 7. A method of claim 1, wherein, prior to vaporization to cool the compressed refrigerant stream (328, 339), a cooled reduced-pressure liquid refrigerant (345) is reduced in pressure and is combined with the partially vaporized refrigerant (316) to provide a combined two-phase refrigerant (347) that is vaporized to cool the compressed refrigerant stream (328; 339), the compressed refrigerant vapor (330) is cooled (332) to provide a partially-condensed refrigerant, the partially condensed refrigerant is separated (333) into a refrigerant vapor stream (334) and a refrigerant liquid stream (335), the refrigerated vapor stream (334) is compressed (336) and cooled (337) to form a partially condensed stream and the partially-condensed stream is separated (338) into the compressed refrigerant vapor (328, 339) and a liquid stream (340), the pressure of the liquid refrigerant is reduced (341) to provide a reduced-pressure liquid refrigerant (342), the reduced-pressure liquid refrigerant (342) is combined with the refrigerant liquid stream (343) and subcooled by indirect heat exchange (344) with the combined two-phase refrigerant (347) to provide the cooled reduced-pressure liquid refrigerant (345) for combining with the partially vaporized refrigerant (316). 8. A system for liquefying a gas stream (1) by a method of claim 1, which system comprises: at least two heat exchange zones (310, 311 312; 353) adapted for cooling the gas stream (1) successively through respective temperature ranges to provide a liquefied product (13) and respective refrigeration systems for providing respective refrigerants in respective refrigerant lines (117, 213, 315) to the heat exchange zones (310, 311, 312; 353), wherein the coldest heat exchange zone (312) is adapted to only partially vaporize the respective (i.e., coldest) refrigerant (315), wherein the refrigeration system providing the coldest refrigerant is a recirculating refrigeration system comprising: a further heat exchange zone (317, 355) adapted to further vaporize the resultant partially vaporized refrigerant at temperatures above the highest temperature of the coldest heat exchange zone (312), compression means (319, 324; 349) for compressing the vaporized refrigerant to provide the compressed refrigerant stream, piping means (318, 348) to provide vaporized refrigerant from the further heat exchange zone (317, 355) to the compression means (319, 324; 349), means to provide compressed refrigerant (328, 354) to the further heat exchange zone (317, 355), piping means to convey a cooled compressed refrigerant from the further heat exchange zone (317; 355) to the coldest heat exchange zone (312), and means to further cool (356) the cooled compressed refrigerant to provide a cooled compressed refrigerant (313), characterized in that the means to provide compressed refrigerant (328; 354) to the further heat exchange zone (317, 355) comprises either (i) piping means (329) to convey the entire compressed refrigerant stream (328) to the further heat exchange zone (317), wherein the further heat exchange zone (317) is adapted to provide self-refrigeration for the recirculating refrigeration system, or (ii) piping means to convey the entire compressed refrigerant stream (351) to a heat exchange zone (353) that precedes the coldest heat exchange zone (312), wherein the heat exchange zone (353) is adapted to cool the entire compressed refrigerant stream (351) by indirect heat exchange (352), and piping means to convey an intermediate cooled compressed refrigerant (354) to the further heat exchange zone (355). 9. A system of claim 8, wherein the means to further cool (356) the cooled compressed refrigerant to provide a condensed refrigerant comprises the coldest heat exchange zone (312) and the system further comprises pressure reduction means (314) to reduce the pressure of the condensed refrigerant to provide the refrigerant to the refrigerant line (315) for the coldest heat exchange zone (312). 10. A system of claim 9, wherein the further heat exchange zone (344) includes means for subcooling a refrigerant liquid to provide a subcooled refrigerant liquid and the coldest refrigeration system comprises pressure reduction means (346) for reducing the pressure of the subcooled refrigerant liquid to provide a reduced-pressure refrigerant, piping means (347) for combining the reduced-pressure refrigerant with the partially vaporized refrigerant from the coldest heat exchange zone (312) to provide a combined vaporizing refrigerant stream to the further heat exchange zone (344), and piping means (330) to feed a combined vaporized refrigerant stream to the compression means. 11. A system of claim 10, wherein the compression means for compressing the vaporized refrigerant (330) from the further heat exchange zone (344) comprises: a first stage compressor (331), an intercooler (332) adapted to cool and partially condense the resultant first compressed refrigerant stream from first stage compressor (331) to yield a partially-condensed first refrigerant stream, a first separator (333) to separate the partially condensed first compressed refrigerant stream into a first vapor refrigerant stream and a first liquid refrigerant stream, a second stage compressor (336) to compress the first vapor refrigerant stream to provide a compressed vapor refrigerant stream, an aftercooler (337) to cool the compressed vapor refrigerant stream to provide a cooled two-phase refrigerant stream, a second separator (338) to provide a second liquid refrigerant stream (340) and the and the compressed refrigerant to piping means (339) for feed to the further heat exchange zone (344), pressure reduction means (341) to reduce the pressure of the second liquid refrigerant stream to provide a reduced-pressure second refrigerant stream, and piping means (335, 342, 343) to combine the reduced-pressure second refrigerant stream and the first liquid refrigerant stream to provide the refrigerant liquid to the further heat exchange zone (344). 12. A system of claim 8 for liquefying a gas stream (1) by a method of claim 1, wherein the coldest refrigeration system comprises: piping means (348) to provide the vaporized refrigerant from the further heat exchange zone (355) to the compression means (349) for compressing a vaporized third refrigerant (348) to provide a compressed refrigerant, cooling means (352) in a heat exchange zone preceding the coldest heat exchange zone (312) for cooling the compressed refrigerant (351) by indirect heat exchange with the respective refrigerant (117) vaporizing in the heat exchange zone (353) to provide a cooled compressed refrigerant, piping means (354) to provide the cooled compressed refrigerant to the further heat exchange zone (355) to further cool the cooled compressed refrigerant by indirect heat exchange with the vaporizing refrigerant from the coldest heat exchange zone (312) to provide a condensed refrigerant (329) and the vaporized third refrigerant (348), and pressure reduction means (314) to reduce the pressure of the condensed refrigerant to provide the refrigerant to the refrigerant line (315) to the coldest refrigerant zone (312).
※ AI-Helper는 부적절한 답변을 할 수 있습니다.