대표
청구항
▼
What is claimed is: 1. A wind turbine for a power generator, comprising: a rotor hub adapted for rotatably coupling with said power generator to generate a rotation power thereto, wherein said rotor hub has a peripheral guiding rim and an air passage formed within said guiding rim for allowing an axial flow of air passing through said air passage of said rotor hub; and a plurality of blades, each of said blades having a proximal end radially extended from said guiding rim of said rotor rub and a distal end outwardly extending to define a blade surface b...
What is claimed is: 1. A wind turbine for a power generator, comprising: a rotor hub adapted for rotatably coupling with said power generator to generate a rotation power thereto, wherein said rotor hub has a peripheral guiding rim and an air passage formed within said guiding rim for allowing an axial flow of air passing through said air passage of said rotor hub; and a plurality of blades, each of said blades having a proximal end radially extended from said guiding rim of said rotor rub and a distal end outwardly extending to define a blade surface between said proximal end and said distal end, wherein said surfaces of said blades are arranged in such a manner that when said air flow exerts on said blade surfaces of said blades, said rotor hub is driven to rotate for generating said rotational power to said power generator, wherein said rotor hub allows said air flow passing through said air passage to minimize an air drag thereof so as to enhance an efficiency of said rotational power generated by said rotor hub. 2. The wind turbine, as recited in claim 1, wherein said rotor hub further comprises an air guider provided on said guiding rim to form an air detouring surface on said guiding rim for guiding said air flowing towards said blade surface of each of said blades when said air flow impinges on said rotor hub so as to provide additional wind power to said blade for rotating said wind turbine. 3. The wind turbine, as recited in claim 1, wherein each of said blades has a leading edge that is curved for minimizing turbulence when said blade slices into said flow of air, and a trailing edge having a tapered contour extending between said distal end of said blade to said proximal end thereof, such that when said air hits on said blade, said blade is efficiently driven to rotate for converting an kinetic energy of said flow of air to said rotational power of said wind turbine. 4. The wind turbine, as recited in claim 2, wherein each of said blades has a leading edge that is curved for minimizing turbulence when said blade slices into said flow of air, and a trailing edge having a tapered contour extending between said distal end of said blade to said proximal end thereof, such that when said air hits on said blade, said blade is efficiently driven to rotate for converting an kinetic energy of said flow of air to said rotational power of said wind turbine. 5. The wind turbine, as recited in claim 1, further comprises a plurality of hinges connecting said rotor hub with said proximal ends of blades respectively in a retractably rotating manner to allow a blade angle of each of said blades to be adjustably changed with respect to a direction of said air flow, so as to regulate a rotational speed of said rotor hub. 6. The wind turbine, as recited in claim 2, further comprises a plurality of hinges connecting said rotor hub with said proximal ends of blades respectively in a retractably rotating manner to allow a blade angle of each of said blades to be adjustably changed with respect to a direction of said air flow, so as to regulate a rotational speed of said rotor hub. 7. The wind turbine, as recited in claim 4, further comprises a plurality of hinges connecting said rotor hub with said proximal ends of blades respectively in a retractably rotating manner to allow a blade angle of each of said blades to be adjustably changed with respect to a direction of said air flow, so as to regulate a rotational speed of said rotor hub. 8. The wind turbine, as recited in claim 1, further comprising an angle adjusting arrangement which comprises a driving arrangement and a plurality of adjustment mechanisms each of which connecting said respective blade with said rotor hub in a movably adjustable manner, wherein each of said adjustment mechanisms comprises a transmission assembly coupling said driving arrangement with said respective blade in such a manner that when said driving arrangement is driven to operate, said transmission assembly is driven to operate for altering an angle of said corresponding blade. 9. The wind turbine, as recited in claim 2, further comprising an angle adjusting arrangement which comprises a driving arrangement and a plurality of adjustment mechanisms each of which connecting said respective blade with said rotor hub in a movably adjustable manner, wherein each of said adjustment mechanisms comprises a transmission assembly coupling said driving arrangement with said respective blade in such a manner that when said driving arrangement is driven to operate, said transmission assembly is driven to operate for altering an angle of said corresponding blade. 10. The wind turbine, as recited in claim 4, further comprising an angle adjusting arrangement which comprises a driving arrangement and a plurality of adjustment mechanisms each of which connecting said respective blade with said rotor hub in a movably adjustable manner, wherein each of said adjustment mechanisms comprises a transmission assembly coupling said driving arrangement with said respective blade in such a manner that when said driving arrangement is driven to operate, said transmission assembly is driven to operate for altering an angle of said corresponding blade. 11. The wind turbine, as recited in claim 8, wherein each of said driving arrangements comprises a driver source adapted for delivering a rotational power, and a driving cable connected with said driver source for transforming a rotational power to a predetermined amount of linear force, wherein each of said transmission assemblies comprises a driven pulley, a driven shaft, and a pivotal shaft extended along a longitudinal direction of said respective blade so as to allow said blade to rotate about said pivotal shaft, wherein a bottom portion of said pivotal shaft is connected with said driven shaft which is then connected with said driven pulley via said driving cable, so that when said driving source is activated, said driving cable is driven to move for driving said driven shaft to move so as to drive said blade to move pivotally with respect to said rotor hub. 12. The wind turbine, as recited in claim 9, wherein each of said driving arrangements comprises a driver source adapted for delivering a rotational power, and a driving cable connected with said driver source for transforming a rotational power to a predetermined amount of linear force, wherein each of said transmission assemblies comprises a driven pulley, a driven shaft, and a pivotal shaft extended along a longitudinal direction of said respective blade so as to allow said blade to rotate about said pivotal shaft, wherein a bottom portion of said pivotal shaft is connected with said driven shaft which is then connected with said driven pulley via said driving cable, so that when said driving source is activated, said driving cable is driven to move for driving said driven shaft to move so as to drive said blade to move pivotally with respect to said rotor hub. 13. The wind turbine, as recited in claim 10, wherein each of said driving arrangements comprises a driver source adapted for delivering a rotational power, and a driving cable connected with said driver source for transforming a rotational power to a predetermined amount of linear force, wherein each of said transmission assemblies comprises a driven pulley, a driven shaft, and a pivotal shaft extended along a longitudinal direction of said respective blade so as to allow said blade to rotate about said pivotal shaft, wherein a bottom portion of said pivotal shaft is connected with said driven shaft which is then connected with said driven pulley via said driving cable, so that when said driving source is activated, said driving cable is driven to move for driving said driven shaft to move so as to drive said blade to move pivotally with respect to said rotor hub. 14. The wind turbine, as recited in claim 8, wherein each of said driving arrangements comprises a driver source adapted for delivering a rotational power, and a main transmission gear connected with said driver source for transforming a rotational power to a predetermined amount of linear force, wherein said transmission assemblies comprises a pivotal shaft pivotally connecting the respective blade with said rotor hub, and a gear assembly operatively coupling said lower end of said pivotal shaft with said transmission gear in such a manner that when said transmission gear is driven to rotate, said gear assembly is driven to operate so as to rotate said blade for changing said angle thereof. 15. The wind turbine, as recited in claim 9, wherein each of said driving arrangements comprises a driver source adapted for delivering a rotational power, and a main transmission gear connected with said driver source for transforming a rotational power to a predetermined amount of linear force, wherein said transmission assemblies comprises a pivotal shaft pivotally connecting the respective blade with said rotor hub, and a gear assembly operatively coupling said lower end of said pivotal shaft with said transmission gear in such a manner that when said transmission gear is driven to rotate, said gear assembly is driven to operate so as to rotate said blade for changing said angle thereof. 16. The wind turbine, as recited in claim 10, wherein each of said driving arrangements comprises a driver source adapted for delivering a rotational power, and a main transmission gear connected with said driver source for transforming a rotational power to a predetermined amount of linear force, wherein said transmission assemblies comprises a pivotal shaft pivotally connecting the respective blade with said rotor hub, and a gear assembly operatively coupling said lower end of said pivotal shaft with said transmission gear in such a manner that when said transmission gear is driven to rotate, said gear assembly is driven to operate so as to rotate said blade for changing said angle thereof. 17. The wind turbine, as recited in claim 1, further comprising an outer retention frame connecting to said distal ends of said blades, wherein said outer retention frame has an air guiding surface extended towards said distal ends of said blades for guiding said air flowing towards said blade surface of each of said blades when said air flow impinges on said retention frame so as to provide additional wind power to said blade for rotating said wind turbine. 18. The wind turbine, as recited in claim 13, further comprising an outer retention frame connecting to said distal ends of said blades, wherein said outer retention frame has an air guiding surface extended towards said distal ends of said blades for guiding said air flowing towards said blade surface of each of said blades when said air flow impinges on said retention frame so as to provide additional wind power to said blade for rotating said wind turbine. 19. The wind turbine, as recited in claim 16, further comprising an outer retention frame connecting to said distal ends of said blades, wherein said outer retention frame has an air guiding surface extended towards said distal ends of said blades for guiding said air flowing towards said blade surface of each of said blades when said air flow impinges on said retention frame so as to provide additional wind power to said blade for rotating said wind turbine. 20. The wind turbine, as recited in claim 1, wherein said rotor hub, having a ring shape and defining said air passage therewithin, comprises a plurality of spokes spacedly extended from said guiding rim to rotatably couple with said power generator. 21. The wind turbine, as recited in claim 18, wherein said rotor hub, having a ring shape and defining said air passage therewithin, comprises a plurality of spokes spacedly extended from said guiding rim to rotatably couple with said power generator. 22. The wind turbine, as recited in claim 19, wherein said rotor hub, having a ring shape and defining said air passage therewithin, comprises a plurality of spokes spacedly extended from said guiding rim to rotatably couple with said power generator. 23. The wind turbine, as recited in claim 20, wherein said rotor hub further comprises a central rotating pivot rotatably coupling with said power generator, wherein said spokes are rearwardly and concentrically extended from said guiding rim to said central rotating pivot in such a manner that when said blades expose to air flow, said blades are driven to rotate about said central rotating pivot. 24. The wind turbine, as recited in claim 21, wherein said rotor hub further comprises a central rotating pivot rotatably coupling with said power generator, wherein said spokes are rearwardly and concentrically extended from said guiding rim to said central rotating pivot in such a manner that when said blades expose to air flow, said blades are driven to rotate about said central rotating pivot. 25. The wind turbine, as recited in claim 22, wherein said rotor hub further comprises a central rotating pivot rotatably coupling with said power generator, wherein said spokes are rearwardly and concentrically extended from said guiding rim to said central rotating pivot in such a manner that when said blades expose to air flow, said blades are driven to rotate about said central rotating pivot.