대표
청구항
▼
What is claimed is: 1. A system for generating energy, comprising: a first heat exchanger in thermal communication, fluid communication, or a combination of thermal and fluid communication with a first heat source, wherein the first heat exchanger heats a transfer fluid that comprises a working fluid and an associating composition, wherein the working fluid and the associating composition are capable of reversible associating with each other and wherein heating of the transfer fluid in the first heat exchanger generates a vapor comprising the working fl...
What is claimed is: 1. A system for generating energy, comprising: a first heat exchanger in thermal communication, fluid communication, or a combination of thermal and fluid communication with a first heat source, wherein the first heat exchanger heats a transfer fluid that comprises a working fluid and an associating composition, wherein the working fluid and the associating composition are capable of reversible associating with each other and wherein heating of the transfer fluid in the first heat exchanger generates a vapor comprising the working fluid; a first separator in thermal communication, fluid communication, or a combination of thermal and fluid communication with the first heat exchanger and downstream of the first heat exchanger; a first superheater in thermal communication, fluid communication, or a combination of thermal and fluid communication with the first separator and downstream of the first heat exchanger; a first energy conversion device in thermal communication, fluid communication, or a combination of thermal and fluid communication with the first superheater and downstream of first superheater, wherein the first energy conversion device comprises a moving surface that is contacted by the vapor generated in the first heat exchanger; an absorber downstream of the first energy conversion device and in thermal communication, fluid communication, or a combination of thermal and fluid communication with the energy conversion device, wherein the absorber is adapted to receive the vapor that has passed through the energy conversion device and to receive the associating composition that has passed through the heat exchanger; a first regenerator located upstream of the absorber and in thermal communication, fluid communication, or a combination of thermal and fluid communication with the absorber, wherein the regenerator is adapted to receive the transfer fluid from the absorber and allows the transfer fluid to return to the first heat exchanger; and a pump in thermal communication, fluid communication, or a combination of thermal and fluid conmunication with the first heat exchanger. 2. The system of claim 1, wherein the first heat source is a geothermal source of heat, a solar source of heat, an exhaust system of a locomotive, a braking system of a locomotive, an exhaust system of a chemical reactor, heat of a nuclear reactor, gas turbine exhaust, an incinerator, an annealing furnace, a cement kiln, an oxidation processes for ammonia, a copper reverberatory furnace, a forge furnace, a billet-heating furnace, an open-hearth steel furnace, an oxygen furnace, a sulfur ore processor, a glass melting furnace, a zinc fuming furnace, or a combination comprising at least one of the foregoing sources of heat. 3. The system of claim 2, wherein the geothermal source of heat is a heat source located at a depth of greater than or equal to about 1500 meters below the earth's surface and wherein the heat source can cover a volume of greater than or equal to about 1 cubic kilometer. 4. The system of claim 1, wherein the first heat source supplies heat to a first fluid that comprises a fluidized solid, a liquid or a gas. 5. The system of claim 1, wherein the first heat source supplies heat to a first fluid that comprises an aprotic polar solvent, a polar protic solvent, a non-polar solvents or a combination comprising at least one of the foregoing fluids. 6. The system of claim 5, wherein the first fluid is water. 7. The system of claim 1, wherein the transfer fluid comprises a complex derived from the absorption, adsorption, chemisorption, ionic bonding, covalent bonding, or the formation of ligands by the working fluid onto the associating composition. 8. The system of claim 7, wherein the associating composition comprises a salt and wherein the working fluid comprises a fluid that can undergo a thermally reversible association and/or dissociation with the salt. 9. The system of claim 7, wherein the associating composition comprises zeolites, clay, activated coal, room temperature ionic liquids or carbon. 10. The system of claim 9, wherein the room temperature ionic liquids are trimethylphenylammonium bistrifluoride, 1,3-butylmethylpyrrolidinium bistriflamide, 1,3-butylmethylimidazolium bistriflamide, 1,3-ethylmethylimidazolium bistriflamide, 1,3-ethylmethylpyrrolidinium bistriflamide, 1,3-trihexyltetradecanephosphonium bistriflate, butylmethylimidazolium hexafluorophosphate, butylmethylimidazolium tetrafluoroborate, ethylmethylimidazolium bis(trifluoromethanesulfonyl)amide, ethylmethylimidazolium trifluoromethanesulfone, and ethylmethylimidazolium dicyanamide, 1-butyl-3-methylimidazolium chloride, 1-butylpyridinum chloride, or a combination comprising at least one of the foregoing room temperature ionic liquids. 11. The system of claim 8, wherein the salt is strontium bromide, strontium chloride, calcium chloride, magnesium chloride, sodium chloride, potassium chloride, ammonium chloride, berrylium chloride, magnesium bromide, magnesium hypochlorite; calcium bromide, sodium bromide, calcium hypochlorite, barium bromide, barium chloride, manganese chloride, manganese bromide, ferric chloride, ferric bromide, cobalt chloride, cobalt bromide, nickel chloride, nickel bromide, nickel hypochlorite, chromium chloride, cadmium bromide, tantalum chloride, rhenium chloride, rhenium bromide, tin chloride, sodium tetrachloroaluminate, ammonium tetrachloroaluminate, potassium tetrachloroaluminate, ammonium tetrachlorozincate, (NH4)3ZnCl5, potassium tetrachlorozincate, CsCuCl3, K2FeCl5, or a combination comprising at least one of the foregoing salts. 12. The system of claim 8, wherein the working fluid is ammonia, an alcohol; water; carbon dioxide; hydrogen; an amine; a sebacate; a phthalate; an aldehydes; a formamide; a ketone; acetonitrile; a sulfoxide; a sulfone; an acetate; an amide; or a combination comprising at least one of the foregoing working fluids. 13. The system of claim 7, wherein the complexes are BeCl2.X(NH3), wherein X is between 2 and 4; MgCl2.X(NH3) wherein X is between 2 and 6; MgBr2.X(NH3), wherein X is between 2 and 6; Mg(ClO4)2.X(NH3), wherein X is between 0 and-6; CaCl2.X(NH3), wherein X is between 2 and 4; CaCl2.X(NH3), wherein X is between 4 and 8; CaBr2.X(NH3), wherein X is between 2 and 6; Ca(ClO4)2.X(NH3), wherein X is between 2 and 6; SrCl2.X(NH3), wherein X is between 1 and 8; SrBr2.X(NH3), wherein X is between 2 and 8; Sr(ClO)2.X(NH3), wherein X is between 0 and 6; BaBr2.X(NH3), wherein X is between 4 and 8; BaCl2.X(NH3), wherein X is between 0 and 8; MnCl2.X(NH3), wherein X is between 2 and 6; MnBr.X(NH3), wherein X is between 2 and 6; FeCl2.X(NH3), wherein X is between 3 and 6; FeBr2.X(NH3), wherein X is between 2 and 6; CoCl2.X(NH3), wherein X is between 2 and 6; CoBr2.X(NH3), wherein X is between 2 and 6; NiCl2.X(NH3), wherein X is between 2 and 6; NiBr2.X(NH3), wherein X is between 2 and 6; Ni(ClO3)2.X(NH3), wherein X is between 0 and 6; CrCl2.X(NH3), wherein X is between 0 and 3 and between 3 and 6; CdBr2.X(NH3), wherein X is between 2 and 6; TaCl3.X(NH3), wherein X is between 0 and 7; ReCl3.X(NH3), wherein X is between 0 and 6; ReBr3.X(NH3), wherein X is between 0 and 7; SnCl2.X(NH3), wherein X is between 0 and 2.5; NH4AlCl4.X(NH3), wherein X is between 0 and 6; NaAlCl4.X(NH3), wherein X is between 0 and 6; KAlCl4.X(NH3), wherein X is between 0 and 6; (NH4)2ZnCl4.(NH3), wherein X is between 0 and 4; (NH4)3ZnCl5.X(NH3), wherein X is between 0 and 6; K2ZnCl4.X(NH3), wherein X is between 0 and 5; K2ZnCl4.X(NH3), wherein X is between 5 and 12; CsCuCl3.X(MH3), wherein X is between 2 and 5; K2FeCl5.X(NH3), wherein X is between 2 and 5; NH4Cl.X(NH3), wherein X is between 0 and 3; NaBr.X(NH3), wherein X is between 0 and 5.25; CaCl2.XH2O, wherein X is between 1 and 4; or a combination comprising at least one of the foregoing complexes. 14. The system of claim 1, wherein the transfer fluid further comprises a carrier fluid. 15. The system of claim 14, wherein the carrier fluid is a long chain alcohols having at least seven carbon atoms and the isomers thereof; an ether, a glycol, a perfluorocarbon, a glycol ether; a sebacate; a phthalate; an aldehydes; a ketones; or a combination comprising at least one of the foregoing carrier fluids. 16. The system of claim 15, wherein the carrier fluid along with a vapor of the working fluid can be expanded in a energy conversion device to generate energy. 17. The system of claim 1, wherein the pump located upstream of and thermal communication, fluid communication, or a combination of thermal and fluid communication with the first heat exchanger; and wherein a pressure regulator is disposed between the heat first exchanger and the absorber, wherein the pressure regulator is located downstream of the first heat exchanger. 18. The system of claim 1, wherein the first regenerator heats the transfer fluid after the fluid exits the first absorber and prior to an entry of the transfer fluid into the first heat exchangers. 19. The system of claim 1, further comprising a second energy conversion and/or a third energy conversion device in thermal communication, fluid communication, or a combination of thermal and fluid communication with the first energy conversion device. 20. The system of claim 19, wherein the first heat exchanger, the second heat exchanger and/or the third heat exchanger are in thermal communication, fluid communication, or a combination of thermal and fluid communication with a first source of heat; and wherein a first absorber is in thermal communication, fluid communication, or a combination of thermal and fluid communication with the first heat exchanger, the second heat exchanger and/or the third heat exchanger; and wherein the absorber is also in thermal communication, fluid communication, or a combination of thermal and fluid communication with a first energy conversion device and a second energy conversion device. 21. The system of claim 20, further comprising an intercooler; wherein the intercooler is a supplementary heat exchanger adapted to heat a portion of the transfer fluid flowing from the first absorber. 22. The system of claim 21, wherein the intercooler is in thermal communication, fluid communication, or a combination of thermal and fluid communication with a supplementary heat source. 23. The system of claim 22, wherein the supplementary heat source uses heat derived from a braking system, exhaust of an internal combustion engine, exhaust from a chemical reactor, exhaust from a nuclear reactor, a geothermal source, gas turbine exhaust, incinerators, annealing furnaces, cement kilns, oxidation processes for ammonia, copper reverberatory furnaces, forge heating furnaces, billet-heating furnaces, open-hearth steel furnaces, oxygen furnaces, sulfur ore processors, glass melting furnaces, zinc fuming processors, furnaces, or a combination comprising at least one of the foregoing heat sources. 24. The system of claim 21, wherein the intercooler is the compressed air of a turbocharger. 25. The system of claim 1, further comprising a first energy storage unit configured to receive vapor from the first heat exchanger. 26. The system of claim 1, wherein the first heat source and the first heat exchanger are part of a closed loop. 27. The system of claim 1, wherein the first energy conversion device is in thermal communication, fluid communication, or a combination of thermal and fluid communication with an absorber, via a second separator, a second superheater and a second energy conversion device, wherein the second separator, the second superheater and the second energy conversion device are downstream of the first energy conversion device. 28. The system of claim 27, wherein the absorber is in thermal communication, fluid communication, or a combination of thermal and fluid communication with a first heat exchanger and/or a second heat exchanger via a regenerator, wherein the regenerator heats the transfer fluid after the transfer fluid exits the absorber. 29. The system of claim 27, wherein the absorber is in thermal conmunication, fluid conmunication, or a combination of thermal and fluid communication with a first heat exchanger via a first regenerator and wherein the absorber is in thermal conmunication, fluid conmunication, or a combination of thermal and fluid communication with a second heat exchanger via a second regenerator, wherein the first heat exchanger is down stream of the first regenerator and wherein the second heat exchanger is downstream of the second regenerator, wherein the regenerator heats the transfer fluid after the transfer fluid exits the absorber.