대표
청구항
▼
What is claimed is: 1. A locomotive, comprising: a receiver operable to receive a locating signal, the locating signal indicating a current spatial location of a selected locomotive and a processor operable to (a) determine that the selected locomotive has entered, is entering, and/or is about to enter a spatial zone having at least one controlled parameter, the controlled parameter being at least one of a fuel combustion emissions level and noise level and (b) configure the operation of the selected locomotive to comply with the controlled parameter. ...
What is claimed is: 1. A locomotive, comprising: a receiver operable to receive a locating signal, the locating signal indicating a current spatial location of a selected locomotive and a processor operable to (a) determine that the selected locomotive has entered, is entering, and/or is about to enter a spatial zone having at least one controlled parameter, the controlled parameter being at least one of a fuel combustion emissions level and noise level and (b) configure the operation of the selected locomotive to comply with the controlled parameter. 2. The locomotive of claim 1, wherein the controlled parameter is a fuel combustion emission level. 3. The locomotive of claim 1, wherein the controlled parameter is a noise level. 4. The locomotive of claim 1, wherein the locating signal is a Global Positioning System signal, a radio signal, a cell phone signal, a transponder signal, and a mechanical locator signal, wherein the locomotive is a hybrid locomotive having an energy storage unit, a prime mover, at least one traction motor, a dynamic braking system, and a regenerative braking system for recovering braking energy and providing the recovered braking energy to the energy storage unit and wherein the processor is further operable to (c) determine, from the locating signal, the current spatial location of the selected locomotive and (d) determine a state of charge of the energy storage unit. 5. The locomotive of claim 4, wherein the processor is further operable to: (e) determine a projected energy consumption as the selected locomotive traverses a plurality of upcoming spatial zones; and (f) based on the controlled parameter and the projected energy consumption over the plurality of upcoming spatial zones, select an operating mode, from among a plurality of operating modes, for the current zone. 6. The locomotive of claim 5, wherein the plurality of operating modes include at least the following modes: (i) a first operating mode in which the prime mover of the selected locomotive is continuously deactivated and at least most of the energy to operate the at least one traction motor is removed from the energy storage unit and (ii) a second operating mode in which the prime mover is at least one of (a) intermittently activated and deactivated and (b)(i) intermittently activated but not transmitting power and (ii) activated and transmitting power to provide energy to the energy storage unit and wherein at least most of the energy to operate the at least one traction motor is removed from the energy storage unit. 7. The locomotive of claim 6, wherein the plurality of operating modes further include at least the following modes: (iii) a third operating mode in which the prime mover provides at least most of the energy required to operate the at least one traction motor, wherein energy is at least one of not removed and intermittently removed from the energy storage unit; (iv) a fourth operating mode in which the prime mover and energy storage unit operate at or near each of the prime mover's and energy storage unit's respective power ratings; and (v) a fifth operating mode in which the brakes of the selected locomotive are engaged and at least some of the energy provided to the energy storage unit is generated by regenerative braking, the fifth operating mode excluding the first, second, third, and fourth operating modes. 8. The locomotive of claim 6, wherein, in the first operating mode, the selected locomotive has at least one of an average hydrocarbon emissions level of no more than about 10% of a current applicable regulated level, an average carbon monoxide emissions level of no more than about 10% of the current applicable regulated level, an average nitrous oxides emissions level of no more than about 10% of the current applicable regulated level, an average sulfur dioxide emissions level of no more than about 10% of the current applicable regulated level, an average particulate emissions level of no more than about 10% of the current applicable regulated level, and an average power plant noise level of at least 6 dBa less than the current applicable regulated level and wherein, in the second operating mode, the selected locomotive has at least one of an average hydrocarbon emissions level of no more than about 50% of a current applicable regulated level, an average carbon monoxide emissions level of no more than about 50% of the current applicable regulated level, an average nitrous oxides emissions level of no more than about 50% of the current applicable regulated level, an average sulfur dioxide emissions level of no more than about 50% of the current applicable regulated level, an average particulate emissions level of no more than about 50% of the current applicable regulated level, and an average power plant noise level of at least 3 dBa less than the current applicable regulated level. 9. The locomotive of claim 8, wherein the first operating mode is selected when a state of charge of the energy storage unit is at least a specified level, wherein the second operating mode is selected when the state of charge of the energy storage unit is less than the specified level, wherein the third operating mode is selected for spatial zones having no controlled parameter, wherein the fourth operating mode is selected for a spatial zone requiring maximum acceleration of the selected locomotive, and wherein the fifth operating mode is selected when the selected locomotive is at least one of decelerating and traversing a decline. 10. The locomotive of claim 6, wherein the selected locomotive and a second locomotive are members of a consist, wherein the selected locomotive and second locomotive are positioned at different locations along the train, wherein the respective positions of the selected locomotive and second locomotive are separated by a plurality of unmotorized rail cars, wherein, at a selected time, the selected locomotive and second locomotive are located in different spatial zones having differing controlled parameters, and wherein the selected and second locomotives are in differing operating modes at the selected time. 11. The locomotive of claim 10, wherein the operating modes of the selected locomotive and second locomotive are determined by a common master controller. 12. The locomotive of claim 10, wherein the selected locomotive and second locomotive are in electrical communication with one another via a DC power bus, whereby electrical energy can be provided by the selected locomotive to the second locomotive to enable the second locomotive to operate in a selected operating mode. 13. The locomotive of claim 1, wherein the selected locomotive is a member of a consist, wherein a second member of the consist is located at a distance from the selected locomotive, and wherein the determining operation comprises the suboperations of: (A1) determining a first location of the selected locomotive; and (A2) based on the first location, determining a second location of the second member of the consist. 14. The locomotive of claim 1, wherein the selected locomotive comprises a plurality of prime movers and the configuring operation (b) comprises the suboperation of: operating a first subset of the prime movers and not operating a second subset of the prime movers, wherein the first subset of prime movers complies with the controlled parameter. 15. The locomotive of claim 1, wherein operation (b) comprises the suboperations (B1) determining a first operational profile for operating one or more engines of the selected locomotive over the current zone; (B2) comparing the first operational profile with at least one historical profile used to control operation of one or more engines of the selected locomotive over the current zone; and (B3) updating the first operational profile based on the at least one historical profile, wherein, in the comparing step, one or more descriptors are used to select the at least one historical profile and wherein the one or more descriptors are one or more of ambient temperature, ambient precipitation, ambient wind speed and direction, rail condition, train length, train weight, state of charge of an energy storage unit, maximum power available from an energy storage unit, maximum power available from a prime mover, specific fuel consumption of the prime mover, locomotive speed, locomotive acceleration, locomotive deceleration, total power usage, percent rail grade, and track curvature. 16. The locomotive of claim 1, wherein the processor is further operable to (c) determine a current ambient temperature in the current zone. 17. A method for operating a locomotive, comprising: (a) receiving a locating signal, the locating signal indicating a current spatial location of a selected locomotive; (b) determining that the selected locomotive has entered, is entering, and/or is about to enter a spatial zone having at least one controlled parameter, the controlled parameter being at least one of a fuel combustion emissions level and a noise level; and (c) configuring the operation of the selected locomotive to comply with the controlled parameter. 18. The method of claim 17, wherein the controlled parameter is a fuel combustion emissions level. 19. The method of claim 17, wherein the controlled parameter is a noise level. 20. The method of claim 17, wherein the locating signal is from at least one of a Global Positioning System, a radio, a cell phone, a transponder and a mechanical locator situated along the track and wherein the selected locomotive is a hybrid locomotive having an energy storage unit, a prime mover, at least one traction motor, a dynamic braking system, and a regenerative braking system for recovering braking energy and providing the recovered braking energy to the energy storage unit and further comprising: (f) determining, from the locating signal, the current spatial location of the selected locomotive; and (g) determining a state of charge of the energy storage unit. 21. The method of claim 17, wherein the selected locomotive is a member of a consist, wherein the locating signal is associated with a location of a second member of the consist, and wherein the determining step comprises: (i) determining a first location of the second member of the consist; and (ii) based on the first location, determining a second location of the selected locomotive. 22. The method of claim 17, further comprising: (g) determining a projected energy consumption as the selected locomotive traverses a plurality of upcoming spatial zones; and (h) based on the controlled parameter and the projected energy consumption over the plurality of upcoming spatial zones, selecting an operating mode, from among a plurality of operating modes, for the current zone. 23. The method of claim 22, wherein the plurality of operating modes include at least the following modes: (i) a first operating mode in which the prime mover of the selected locomotive is continuously deactivated and at least most of the energy to operate the at least one traction motor is removed from the energy storage unit and (ii) a second operating mode in which the prime mover is at least one of (a) intermittently activated and deactivated and (b)(i) intermittently activated but not transmitting power and (ii) activated and transmitting power to provide energy to the energy storage unit and wherein at least most of the energy to operate the at least one traction motor is removed from the energy storage unit. 24. The method of claim 23, wherein the plurality of operating modes further include at least the following modes: (iii) a third operating mode in which the prime mover provides at least most of the energy required to operate the at least one traction motor, wherein energy is at least one of not removed and intermittently removed from the energy storage unit; (iv) a fourth operating mode in which the prime mover and energy storage unit operate at or near each of the prime mover's and energy storage unit's respective power ratings; and (v) a fifth operating mode in which the dynamic brakes of the selected locomotive are engaged and at least some of the energy provided to the energy storage unit is generated by regenerative braking, the fifth operating mode excluding the first, second, third, and fourth operating modes. 25. The method of claim 23, wherein, in the first operating mode, the selected locomotive has at least one of an average hydrocarbon emissions level of no more than about 10% of a current applicable regulated level, an average carbon monoxide emissions level of no more than about 10% of the current applicable regulated level, an average nitrous oxides emissions level of no more than about 10% of the current applicable regulated level, an average sulfur dioxide emissions level of no more than about 10% of the current applicable regulated level, an average particulate emissions level of no more than about 10% of the current applicable regulated level, and an average power plant noise level of at least 6 dBa less than the current applicable regulated level and wherein, in the second operating mode, the selected locomotive has at least one of an average hydrocarbon emissions level of no more than about 50% of a current applicable regulated level, an average carbon monoxide emissions level of no more than about 50% of the current applicable regulated level, an average nitrous oxides emissions level of no more than about 50% of the current applicable regulated level, an average sulfur dioxide emissions level of no more than about 50% of the current applicable regulated level, an average particulate emissions level of no more than about 50% of the current applicable regulated level, and an average power plant noise level of at least 3 dBa less than the current applicable regulated level. 26. The method of claim 25, wherein the first operating mode is selected when a state of charge of the energy storage unit is at least a specified level, wherein the second operating mode is selected when the state of charge of the energy storage unit is less than the specified level, wherein the third operating mode is selected for spatial zones having no controlled parameter, wherein the fourth operating mode is selected for a spatial zone requiring maximum acceleration of the selected locomotive, and wherein the fifth operating mode is selected for the selected locomotive when the selected locomotive is at least one of decelerating and traversing a decline. 27. The method of claim 23, wherein the selected locomotive and a second locomotive are members of a consist, wherein the selected locomotive and second locomotive are positioned at different locations along the train, wherein the respective positions of the selected locomotive and second locomotive are separated by a plurality of unmotorized rail cars, wherein, at a selected time, the selected locomotive and second locomotive are located in different spatial zones having differing controlled parameters, and wherein the selected and second locomotives are in differing operating modes at the selected time. 28. The method of claim 27, wherein the selected locomotive and second locomotive select autonomously their respective operating modes. 29. The method of claim 27, wherein the selected locomotive and second locomotive are in electrical communication with one another via a DC power bus, whereby electrical energy can be provided by the selected locomotive to the second locomotive to enable the second locomotive to operate in a selected operating mode. 30. The method of claim 17, wherein the selected locomotive comprises a plurality of prime movers and the configuring step (c) comprises: operating a first subset of the prime movers and not operating a second subset of the prime movers, wherein the first subset of prime movers complies with the controlled parameter. 31. The method of claim 17, wherein step (c) comprises the substeps: (i) determining a first operational profile for operating one or more engines of the selected locomotive over the current zone; (ii) comparing the first operational profile with at least one historical profile used to control operation of one or more engines of the selected locomotive over the current zone; and (iii) updating the first operational profile based on the at least one historical profile. 32. The method of claim 31, wherein, in the comparing step, one or more descriptors are used to select the at least one historical profile and wherein the one or more descriptors are one or more of ambient temperature, ambient precipitation, ambient wind speed and direction, rail condition, train length, train weight, state of charge of an energy storage unit, maximum power available from an energy storage unit, maximum power available from a prime mover, specific fuel consumption of the prime mover, locomotive speed, locomotive acceleration, locomotive deceleration, total power usage, percent rail grade, and track curvature. 33. The method of claim 17, further comprising: (d) determining a current ambient temperature in the current zone. 34. A computer readable medium comprising executable instructions for performing the steps of claim 17. 35. A logic circuit operable to perform the steps of claim 17.