IPC분류정보
국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
US-0634215
(2006-12-06)
|
등록번호 |
US-7431605
(2008-10-07)
|
발명자
/ 주소 |
- Dieterle,Derrick
- Chen,Ping
|
출원인 / 주소 |
|
대리인 / 주소 |
Rader, Fishman & Grauer, PLLC
|
인용정보 |
피인용 횟수 :
9 인용 특허 :
15 |
초록
▼
A connector position assurance apparatus includes a header part, an electrically-conductive element connected to the header part and a connector part. As the connector part is received by an interior connector-receiving chamber of the header part, a pair of polarity tabs contact an electrical contac
A connector position assurance apparatus includes a header part, an electrically-conductive element connected to the header part and a connector part. As the connector part is received by an interior connector-receiving chamber of the header part, a pair of polarity tabs contact an electrical contact portion of the electrically-conductive element causing the electrical contact portion to move from a relaxed state to a stressed state while a latch member slides onto and over a catch projecting from the header part causing the latch member to pivotably move from a relaxed condition to a flexed condition and then back to the relaxed condition again when a catch-receiving chamber formed in the latch member receives the catch thereby releasably locking the connector part and the header part together while the pair of polarity tabs retain the electrical contact portion in the stressed state. Movement of the contact portion to the stressed state closes a circuit on a printed circuit board to provide assurance that the header part and the connector part are properly mated.
대표청구항
▼
What is claimed is: 1. A connector position assurance apparatus, comprising: a header part having a header outer surface and a header inner surface, the header inner surface defining an interior connector-receiving chamber, the header part having a catch connected to and projecting from the header
What is claimed is: 1. A connector position assurance apparatus, comprising: a header part having a header outer surface and a header inner surface, the header inner surface defining an interior connector-receiving chamber, the header part having a catch connected to and projecting from the header outer surface; an electrically-conductive element having a main body portion and at least one electrical contact portion integrally formed with the main body portion, the electrically-conductive element being connected to the header part at the main body portion, the at least one electrical contact portion movable between a relaxed state and a stressed state and resiliently biased to the relaxed state; a connector part having an outer connector part surface and sized and adapted to be slidably received by the interior connector-receiving chamber of the header part and having at least one polarity tab and a latch member connected to the outer connector part surface, the latch member having a catch-receiving chamber formed therein and pivotably movable to and between a relaxed condition and a flexed condition, the latch member resiliently biased to the relaxed condition, wherein, as the connector part is received by the interior connector-receiving chamber in a connector receiving direction, the at least one polarity tab contacts the at least one electrical contact portion causing the at least one electrical contact portion to move from the relaxed state to the stressed state while the latch member slides onto and over the catch causing the latch member to pivotably move from the relaxed condition to the flexed condition and then back to the relaxed condition again when the catch-receiving chamber receives the catch thereby releasably locking the connector part and the header part together while the at least one polarity tab retains the at least one electrical contact portion in the stressed state. 2. A connector position assurance apparatus according to claim 1, wherein the electrically-conductive element is a flat panel piece fabricated from a metal material. 3. A connector position assurance apparatus according to claim 2, wherein the main body portion of the electrically-conductive element includes barbs extending laterally from the main body portion. 4. A connector position assurance apparatus according to claim 3, wherein the header part has a cavity formed thereinto sized and adapted to receive the main body portion of the electrically-conductive element in a manner that the barbs penetrate into the header part to retain the electrically-conductive element and the header part connected together. 5. A connector position assurance apparatus according to claim 1, wherein the at least one electrical contact portion includes a shoulder portion, a bridge portion and a bent-arm portion, the shoulder portion being integrally connected to and between the bridge portion and the bent-arm portion, the bridge portion integrally connected to the main body portion. 6. A connector position assurance apparatus according to claim 1, wherein the main body portion of the electrically-conductive element is connected to the header part between the header outer surface and the header inner surface. 7. A connector position assurance apparatus according to claim 6, wherein the main body portion of the electrically-conductive element is embedded into the header part. 8. A connector position assurance apparatus according to claim 1, wherein the main body portion includes an anchor projection connected to and embedded in the header part. 9. A connector position assurance apparatus according to claim 1, wherein the at least one electrical contact portion of the electrically-conductive element includes a pair of electrical contact portions disposed apart from one another with the main body portion positioned therebetween. 10. A connector position assurance apparatus according to claim 1, wherein the at least one polarity tab extends in the connector receiving direction and the header part includes at least one polarity tab-receiving channel sized and positioned to slidably receive the at least one polarity tab in a close-fitting relationship, the at least one polarity tab and the at least one polarity tab-receiving channel extending parallel to the connector receiving direction, the at least one polarity tab-receiving channel being in communication with the interior connector-receiving chamber. 11. A connector position assurance apparatus according to claim 10, wherein the connector part includes at least one connector rail extending parallel to the at least one polarity tab and disposed apart therefrom to form at least one header guide rail-receiving channel therebetween. 12. A connector position assurance apparatus according to claim 11, wherein the header part includes at least one header guide rail disposed within the interior connector-receiving chamber and extending parallel to the connector receiving direction and at least one connector rail-receiving channel in communication with the interior connector-receiving chamber, the at least one header guide rail disposed between the at least one connector rail-receiving channel and the at least one polarity tab-receiving channel, the at least one header guide-rail receiving channel sized to slidably receive the at least one header guide rail in a close-fitting relationship. 13. A connector position assurance apparatus according to claim 10, wherein the at least one polarity tab includes a stop element projecting perpendicularly to the connector receiving direction. 14. A connector position assurance apparatus according to claim 1, wherein the at least one polarity tab includes a pair of polarity tabs disposed apart from one another and extending in the connector receiving direction, the header part includes a pair of polarity tab-receiving channels disposed apart from one another and extending parallel to each other in the connector receiving direction, respective ones of the pair of polarity tab-receiving channels sized and positioned to slidably receive respective ones of the pair of polarity tabs in a close-fitting relationship, the respective one of the pair of polarity tab-receiving channels being in communication with the interior connector-receiving chamber. 15. A connector position assurance apparatus according to claim 14, wherein the connector part includes a pair of connector rails extending parallel to the pair of polarity tabs, respective ones of the pair of connector rails being disposed apart from respective ones of the pair of polarity tabs to form respective ones of a pair of header guide rail-receiving channels therebetween. 16. A connector position assurance apparatus according to claim 15, wherein the header part includes a pair of header guide rails disposed apart from one another within the interior connector-receiving chamber and extending parallel to the connector receiving direction and a pair of connector rail-receiving channels in communication with the interior connector-receiving chamber and extending parallel to one another in the connector receiving direction, respective ones of the pair of header guide rails being disposed between respective ones of the connector rail-receiving channels and respective ones of the pair of polarity tab-receiving channels, each one of the pair of header guide-rail receiving channels sized to slidably receive a respective one of the header guide rails in a close-fitting relationship. 17. A connector position assurance apparatus according to claim 1, wherein the connector part has an outer connector part surface and a fulcrum piece connected to and disposed between the outer connector part surface of the connector part and the latch member, the fulcrum piece being integrally formed with the outer connector part surface of the connector part and the latch member as a unitary construction and operative to enable the latch member to pivotably move to and between the relaxed condition and the flexed condition. 18. A connector position assurance apparatus according to claim 17, wherein the latch member has a flat latch member surface in which the catch-receiving chamber is formed therein and the fulcrum piece is connected to the latch member surface adjacent the catch-receiving chamber so that the latch member pivotably moves in a see-saw manner. 19. A connector position assurance apparatus adapted for use with a printed circuit board having a first electrical printed circuit board contact and a second printed circuit board electrical contact electrically isolated from the first electrical printed circuit board contact, the connector position assurance apparatus comprising: a header part operably connected to the printed circuit board and having a header outer surface and a header inner surface, the header inner surface defining an interior connector-receiving chamber, the header part having a catch connected to and projecting from the header outer surface; an electrically-conductive element having a main body portion and at least one electrical contact portion integrally formed with the main body portion, the electrically-conductive element being connected to the header part at the main body portion, the at least one electrical contact portion movable between a relaxed state and a stressed state and resiliently biased to the relaxed state; a connector part having an outer connector part surface and sized and adapted to be slidably received by the interior connector-receiving chamber of the header part and having at least one polarity tab and a latch member, the latch member having a catch-receiving chamber formed therein and pivotably movable to and between a relaxed condition and a flexed condition, the latch member resiliently biased to the relaxed condition, wherein, as the connector part is received by the interior connector-receiving chamber in a connector receiving direction, the at least one polarity tab contacts the at least one electrical contact portion causing the at least one electrical contact portion to move from the relaxed state to the stressed state when the at least one electrical contact portion contacts one of the first and second printed circuit board contacts while the latch member slides onto and over the catch causing the latch member to pivotably move from the relaxed condition to the flexed condition and then back to the relaxed condition again when the catch-receiving chamber receives the catch thereby releasably locking the connector part and the header part together while the at least one polarity tab retains the at least one electrical contact portion in the stressed state and in electrical contact with the one of the first and second printed circuit board contacts resulting in electrical communication between the first and second printed circuit board contacts. 20. A connector position assurance apparatus according to claim 19, wherein the at least one electrical contact portion includes a shoulder portion, a bridge portion and a bent-arm portion, the shoulder portion being integrally connected to and between the bridge portion and the bent-arm portion, the bridge portion integrally connected to the main body portion. 21. A connector position assurance apparatus according to claim 20, wherein, when the electrically-conductive element is in the stressed state, the at least one polarity tab pushes downwardly on the shoulder portion causing the bridge portion to flex downwardly relative to the main body portion toward the printed circuit board and the bent-arm portion contacts the printed circuit board and flexes upwardly relative the printed circuit board. 22. A header part, comprising: a header body having a header outer surface and a header inner surface, the header inner surface defining an interior connector-receiving chamber extending along a longitudinal direction, the header part having a catch connected to and projecting from the header outer surface and having a cavity formed between the header outer surface and the header inner surface, the header part including at least one polarity tab-receiving channel extending in the longitudinal direction and in communication with the interior connector-receiving chamber, the header part including at least one header guide rail disposed within the interior connector-receiving chamber and extending parallel to the longitudinal direction and at least one connector rail-receiving channel in communication with the interior connector-receiving chamber, the at least one header guide rail disposed between the at least one connector rail-receiving channel and the at least one polarity tab-receiving channel. 23. A header part according to claim 22, wherein the at least one polarity tab-receiving channel includes a pair of polarity tab-receiving channels disposed apart from one another and extending parallel to each other in the connector receiving direction, the at least one header guide rail includes a pair of header guide rails disposed apart from one another within the interior connector-receiving chamber and extending parallel to each other in the longitudinal and the at least one connector rail-receiving channels includes a pair of connector rail-receiving channels in communication with the interior connector-receiving chamber and extending parallel to one another in the longitudinal direction, respective ones of the pair of header guide rails being disposed between respective ones of the connector rail-receiving channels and respective ones of the pair of polarity tab-receiving channels. 24. An electrically-conductive element, comprising: an electrically-conductive element body having a main body portion and at least one electrical contact portion integrally formed with and extending laterally from the main body portion, the at least one electrical contact portion movable between a relaxed state and a stressed state and resiliently biased to the relaxed state, the at least one electrical contact portion including a shoulder portion, a bridge portion and a bent-arm portion, the shoulder portion being integrally connected to and between the bridge portion and the bent-arm portion, the bridge portion integrally connected to the main body portion, wherein the main body portion, the shoulder portion, the bridge portion and the bent-arm portion are flat and are disposed in a common x-y plane and wherein, when the at least one electrical contact portion moves from the relaxed state to the stressed state, the bridge portion moves downwardly relative to the main body portion while simultaneously the bent-arm portion moves upwardly relative to the main body portion. 25. An electrically-conductive element according to claim 24, wherein the main body portion includes a plate piece extending generally in the x-y plane and an anchor projection connected to the plate piece and extending perpendicularly from the x-y plane. 26. An electrically-conductive element according to claim 24, wherein the at least one electrical contact portion of the electrically-conductive element includes two electrical contact portions disposed apart from one another with the main body portion positioned therebetween. 27. An electrically-conductive element according to claim 24, wherein the electrically-conductive element is a flat panel piece fabricated from a metal material. 28. An electrically-conductive element according to claim 24, wherein the main body portion of the electrically-conductive element includes barbs extending laterally from the main body portion. 29. A connector part, comprising: a connector part body having an outer connector part surface and extending in a longitudinal direction, the connector part body having at least one polarity tab and a latch member connected to the outer connector part surface, the latch member having a catch-receiving chamber formed therein and pivotably movable to and between a relaxed condition and a flexed condition, the latch member resiliently biased to the relaxed condition, the connector part includes at least one connector rail extending parallel to the at least one polarity tab and disposed apart therefrom to form at least one header guide rail-receiving channel therebetween. 30. A connector part according to claim 29, wherein the at least one polarity tab includes a stop element projecting perpendicularly to the connector receiving direction. 31. A connector part according to claim 29, wherein the at least one polarity tab includes a pair of polarity tabs disposed apart from one another and extending in the longitudinal direction and the at least one connector rail includes a pair of connector rails extending parallel to the pair of polarity tabs, respective ones of the pair of connector rails being disposed apart from respective ones of the pair of polarity tabs to form respective ones of a pair of header guide rail-receiving channels therebetween. 32. A connector part according to claim 29, wherein the connector part has an outer connector part surface and a fulcrum piece connected to and disposed between the outer connector part surface of the connector part and the latch member, the fulcrum piece being integrally formed with the outer connector part surface of the connector part and the latch member as a unitary construction and operative to enable the latch member to pivotably move to and between the relaxed condition and the flexed condition. 33. A connector part according to claim 29, wherein the latch member has a flat latch member surface in which the catch-receiving chamber is formed therein and the fulcrum piece is connected to the latch member surface adjacent the catch-receiving chamber so that the latch member pivotably moves in a see-saw manner.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.