[미국특허]
Systems and methods for generating chlorine dioxide
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
B01J-008/02
C01B-011/02
C01B-011/00
출원번호
US-0683056
(2003-10-10)
등록번호
US-7488457
(2009-02-10)
발명자
/ 주소
DiMascio,Felice
출원인 / 주소
Halox Technologies, Inc.
대리인 / 주소
Cantor Colburn LLP
인용정보
피인용 횟수 :
1인용 특허 :
17
초록▼
Processes for generating chlorine dioxide generally include acidifying an alkali metal chlorite solution; and contacting the acidified alkali metal chlorite solution with a solid phase chlorine containing material to produce chlorine dioxide. An exemplary system for generating chlorine dioxide gener
Processes for generating chlorine dioxide generally include acidifying an alkali metal chlorite solution; and contacting the acidified alkali metal chlorite solution with a solid phase chlorine containing material to produce chlorine dioxide. An exemplary system for generating chlorine dioxide generally includes a water source in fluid communication with a conduit that is fluidly connected to a vessel, wherein the vessel comprises a housing, an inlet in fluid communication with the housing and the conduit, an outlet, and a solid phase chlorine containing material disposed within the housing; an acid source downstream from the water source in fluid communication with the conduit; and a chlorite ion source in fluid communication with the conduit downstream from the acid source. Various means are provided for the acid source.
대표청구항▼
The invention claimed is: 1. A system for generating chlorine dioxide, comprising: a water source in fluid communication with a conduit that is fluidly connected to a vessel, wherein the vessel comprises a housing, an inlet in fluid communication with the housing and the conduit, an outlet, and a s
The invention claimed is: 1. A system for generating chlorine dioxide, comprising: a water source in fluid communication with a conduit that is fluidly connected to a vessel, wherein the vessel comprises a housing, an inlet in fluid communication with the housing and the conduit, an outlet, and a solid phase chlorine containing material in the form of tablets and at a solids fraction of 40 to 90 percent stackedly arranged within the housing; an acid source downstream from the water source in fluid communication with the conduit configured to provide the water source with a pH of 2 to 5, wherein the acid source comprises: i) an electrochemical acidification cell comprising a plurality of compartments, wherein at least one compartment electrolytically produces an acid from an inorganic salt; or ii) a cation exchange cartridge in fluid communication with an inorganic salt solution, wherein the cation exchange column comprises a cation exchange resin in a hydrogen form; and a chlorite ion source in fluid communication with the conduit downstream from the acid source configured to form an acidified chlorite feedstream comprising chlorous acid, wherein the inlet is configured to direct the acidified chlorite feedstream comprising the chlorous acid at a lowermost one of the solid phase chlorine containing tablets such that uppermost solid phase chlorine containing tablets are substantially undissolved during operation and are gravity fed to a lower position as the lowermost tablets are dissolved, wherein the solid phase chlorine containing material has physical and chemical properties that are selected so that a reaction rate is greater than an erosion rate, wherein the system is effective to convert chlorite ions in the chlorite ion source to chlorine dioxide at greater than 90% efficiency. 2. The system of claim 1, wherein the solid phase chlorine containing material is selected from the group consisting of calcium hypochlorite, dichloroisocyanurate, trichloroisocyanurate, and mixtures thereof. 3. A system for producing chlorine dioxide, comprising: a sodium chloride solution in fluid communication with a cation exchange cartridge, wherein the cation exchange column comprises a cation exchange resin in a hydrogen form; and a conduit having one end in fluid communication with an outlet of the cation exchange cartridge and an other end in fluid communication with a vessel, wherein the vessel comprises a housing, an inlet in fluid communication with the housing and the conduit, an outlet, and a solid phase chlorine containing material in the form of tablets and at a solids fraction of 40 to 90 percent stackedly arranged within the housing, wherein the inlet is configured to direct the effluent form the cation exchange cartridge at a lowermost one of the solid phase chlorine containing tablets such that uppermost solid phase chlorine containing tablets are substantially undissolved during operation and are gravity fed to a lower position as the lowermost tablets are dissolved, wherein the solid phase chlorine containing material has physical and chemical properties that are selected so that a reaction rate is greater than an erosion rate, wherein the system is effective to convert chlorite ions in the chlorite ion source to chlorine dioxide at greater than 90% efficiency. 4. The system of claim 3, wherein the cation exchange resin is selected from the group consisting of strong acid polystyrene divinylbenzene crosslinked resins, weak acid polystyrene divinylbenzene crosslinked resins, iminoacetic acid polystyrene divinylbenzene crosslinked chelating selective cation exchange resins, synthetic inorganic cation exchangers and naturally occurring cationic exchangers. 5. The system of claim 3, wherein the solid phase chlorine containing material is selected from the group consisting of calcium hypochlorite, dichloroisocyanurate, trichloroisocyanurate, and mixtures thereof. 6. The system of claim 3, further comprising valve means for emptying the vessel of liquid during periods of non-use. 7. A system for producing chlorine dioxide, comprising: an alkali metal chlorite solution in fluid communication with a cation exchange cartridge, wherein the cation exchange cartridge comprises a cation exchange resin in a hydrogen form; and a conduit having one end in fluid communication with an outlet of the cation exchange cartridge and an other end in fluid communication with an inlet to a vessel, wherein the vessel comprises a housing, an inlet in fluid communication with the housing and the conduit, an outlet, and a solid phase chlorine containing material in the form of tablets and at a solids fraction of 40 to 90 percent stackedly arranged within the housing, wherein the inlet is configured to direct the effluent from the cation exchange cartridge at a lowermost one of the solid phase chlorine containing tablets such that uppermost solid phase chlorine containing tablets are substantially undissolved during operation and are gravity fed to a lower position as the lowermost tablets are dissolved, wherein the solid phase chlorine containing material has physical and chemical properties that are selected so that a reaction rate is greater than an erosion rate, wherein the system is effective to convert chlorite ions in the chlorite ion source to chlorine dioxide at greater than 90% efficiency. 8. The system of claim 7, wherein the cation exchange resin is selected from the group consisting of strong acid polystyrene divinylbenzene crossliniked resins, weak acid polystyrene divinylbenzene crossliniked resins, irninoacetic acid polystyrene divinylbenzene crossliniked chelating selective cation exchange resins, synthetic inorganic cation exchangers and naturally occurring cationic exchangers. 9. The system of claim 7, wherein the solid phase chlorine containing material is selected from the group consisting of calcium hypochlorite, dichloroisocyanurate, trichloroisocyanurate, and mixtures thereof. 10. The system of claim 7, further comprising valve means for emptying the vessel of liquid during periods of non-use. 11. The system of claim 7, further comprising a salt solution in fluid communication with the cation exchange cartridge, wherein the salt solution comprises an alkali and/or an alkaline earth metal salt of chlorides, bromides, iodides, nitrates, sulfates, perchlorates, phosphates, nitrites, sulfites, and mixtures thereof. 12. The system of claim 7, wherein the cation exchange resin is adapted to produce a reaction medium pH of about 2 to about 3. 13. A system for producing chlorine dioxide, comprising: an electrochemical acidification cell comprising an anode compartment comprising an anode, a cathode compartment comprising a cathode, and a central compartment positioned between the anode and cathode compartments, wherein the central compartment comprises a cation exchange material and an outlet in fluid communication with a conduit; an alkali metal chlorite solution in fluid communication with the central compartment acidification cell; a water source in fluid communication with the anode and cathode compartments; and a vessel in fluid communication with the conduit and downstream from the electrochemical acidification cell, wherein the vessel comprises a housing, an inlet in fluid communication with the conduit, an outlet, and a solid phase chlorine containing material in the form of tablets and at a solids fraction of 40 to 90 percent stackedly arranged within the housing, wherein the inlet is configured to direct the effluent from the cation exchange cartridge at a lowermost one of the solid phase chlorine containing tablets such that uppermost solid phase chlorine containing tablets are substantially undissolved during operation and are gravity fed to a lower position as the lowermost tablets are dissolved, wherein the solid phase chlorine containing material has physical and chemical properties that are selected so that a reaction rate is greater than an erosion rate, wherein the system is effective to convert chlorite ions in the chlorite ion source to chlorine dioxide at greater than 90% efficiency. 14. The system of claim 13, wherein the cation exchange material is selected from the group consisting of strong acid polystyrene divinylbenzene crosslinked resins, weak acid polystyrene divinylbenzene crosslinked resins, iminoacetic acid polystyrene divinylbenzene crosslinked chelating selective cation exchange resins, synthetic inorganic cation exchangers and naturally occurring cationic exchangers. 15. The system of claim 13, wherein the solid phase chlorine containing material is selected from the group consisting of calcium hypochlorite, dichloroisocyanurate, trichloroisocyanurate, and mixtures thereof. 16. The system of claim 13, further comprising valve means for emptying the vessel of liquid during periods of non-use. 17. The system according to claim 13, further comprising a salt solution in fluid communication with the electrochemical acidification cell, wherein the salt solution comprises an alkali and/or an alkaline earth metal salts of chlorides, bromides, iodides, nitrates, sulfates, perchlorates, phosphates, nitrites, sulfites, and mixtures thereof is added to the an alkali metal chlorite solution. 18. The system according to claim 13, wherein the electrochemical acidification cell produces a reaction medium pH of about 2 to about 3. 19. A system for producing chlorine dioxide, comprising: an electrochemical acidification cell comprising an anode compartment comprising an anode, a cathode compartment comprising a cathode, and a central compartment positioned between the anode and cathode compartments, wherein the central compartment comprises a cation exchange material and an outlet in fluid communication with a conduit; a sodium chloride solution in fluid communication with the central compartment of the acidification cell; a water source in fluid communication with the anode and cathode compartments; an alkali metal chlorite solution source in fluid communication with the conduit and positioned downstream from the electrochemical acidification cell; and a vessel in fluid communication with the conduit and downstream from the electrochemical acidification cell and the alkali metal chlorite solution source, wherein the vessel comprises a housing, an inlet in fluid communication with the conduit, an outlet, and a solid phase chlorine containing material in the form of tablets and at a solids fraction of 40 to 90 percent stackedly arranged within the housing, wherein the inlet is configured to direct the effluent from the cation exchange cartridge at a lowermost one of the solid phase chlorine containing tablets such that uppermost solid phase chlorine containing tablets are substantially undissolved during operation and are gravity fed to a lower position as the lowermost tablets are dissolved, wherein the solid phase chlorine containing material has physical and chemical properties that are selected so that a reaction rate is greater than an erosion rate, wherein the system is effective to convert chlorite ions in the chlorite ion source to chlorine dioxide at greater than 90% efficiency. 20. The system of claim 19, wherein the solid phase chlorine containing material is selected from the group consisting of calcium hypochlorite, dichloroisocyanurate, trichloroisocyanurate, and mixtures thereof. 21. The system of claim 19, further comprising valve means for emptying the vessel of liquid during periods of non-use.
Sampson Richard L. ; Sampson Allison Hawkins, Electrolytic process and apparatus for the controlled oxidation and reduction of inorganic and organic species in aqueou.
Sampson Richard L. (San Antonio TX) Sampson Allison H. (San Antonio TX), Electrolytic process and apparatus for the controlled oxidation of inorganic and organic species in aqueous solutions.
Sampson Richard L. (San Antonio TX) Sampson Allison H. (San Antonio TX), Electrolytic process and apparatus for the controlled reduction of inorganic and organic species in aqueous solutions.
Peters, Michael J.; Breedlove, John D.; Faulder, David D.; Mayer, Seth R., Electrolytic system and method for generating biocides having an electron deficient carrier fluid and chlorine dioxide.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.