최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
SAI
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
DataON 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
Edison 바로가기다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
Kafe 바로가기국가/구분 | United States(US) Patent 등록 |
---|---|
국제특허분류(IPC7판) |
|
출원번호 | UP-0170785 (2002-06-12) |
등록번호 | US-7582708 (2009-09-16) |
발명자 / 주소 |
|
출원인 / 주소 |
|
대리인 / 주소 |
|
인용정보 | 피인용 횟수 : 0 인용 특허 : 316 |
A polymerization reactor having at least three side wall surfaces and a bottom wall surface forming a reservoir and at least one heat exchanger plate in fluid communication with a coolant source, wherein each of the at least one heat exchanger plate is disposed on a lid. The polymerization reactors
A polymerization reactor having at least three side wall surfaces and a bottom wall surface forming a reservoir and at least one heat exchanger plate in fluid communication with a coolant source, wherein each of the at least one heat exchanger plate is disposed on a lid. The polymerization reactors of the present invention permit large amounts of polymer to be formed in each reactor batch. Preferably, polymers are formed in the polymerization reactor by bulk polymerization. Methods for forming polymers is also disclosed.
What is claimed is: 1. A method of bulk polymerization of at least one alpha olefin monomer to form bulk polyalphaolefin polymer, the method comprising the steps of: combining at least one alpha olefin monomer having a mass and at least one catalyst having a mass in a reservoir cavity of a reservoi
What is claimed is: 1. A method of bulk polymerization of at least one alpha olefin monomer to form bulk polyalphaolefin polymer, the method comprising the steps of: combining at least one alpha olefin monomer having a mass and at least one catalyst having a mass in a reservoir cavity of a reservoir to form a polymerization reaction mixture having a combined mass within the reservoir cavity, the reservoir cavity being formed by at least three side walls and bottom wall; inserting at least one heat exchanger plate having an exchanger cavity in fluid communication with a coolant source into the reservoir cavity thereafter contacting the combined mass of the polymerization reaction mixture with the at least one heat exchanger plate disposed within the reservoir cavity; polymerizing the mass of the at least one alpha olefin monomer within the reservoir cavity with the at least one heat exchanger plate inserted into the reservoir cavity for achieving a conversion level of at least a majority of the mass of the alpha olefin monomer based on the combined mass of the polymerization reaction mixture to form a bulk polyalphaolefin polymer; maintaining the polymerization reaction mixture within the reservoir cavity for removing sufficient heat from the combined mass of the polymerization reaction mixture such that the center most region of the combined mass of the polymerization reaction mixture is sufficiently cooled to form a bulk polyalphaolefin; and removing the least one heat exchanger plate from the reservoir cavity such that the at least one heat exchanger plate and the reservoir cavity comprising a the side walls and the bottom wall can be reused and, thus, voluminous amounts of bulk polyalphaolefin polymer are created. 2. The method of bulk polymerization of claim 1, further comprising the step of disposing a removable film on each of the at least one heat exchanger plate prior to inserting the at least one heat exchanger plate into the reservoir cavity. 3. The method of bulk polymerization of claim 1, wherein the reservoir cavity is formed by four side wall surfaces. 4. The method of bulk polymerization of claim 1, wherein the at least one heat exchanger plate is disposed along an inner wall surface of a lid. 5. The method of bulk polymerization of claim 4, wherein the reservoir cavity is formed by four side wall surfaces. 6. The method of bulk polymerization of claim 5, wherein each of the four side wall surfaces of the reservoir cavity has a square shape having a length and a height. 7. The method of bulk polymerization of claim 5, wherein two of the four side wall surfaces of the reservoir cavity include a length of at least two feet and height of at least two feet; and the other two of the four side wall surfaces of the reservoir cavity include a length of at least three feet and a height of at least two feet. 8. The method of bulk polymerization of claim 7, wherein the lid is a rectangularly shaped having a length and a width the length being at least three feet and the width being at least two feet. 9. The method of bulk polymerization of claim 4, wherein the lid includes at least two heat exchanger plates. 10. The method of bulk polymerization of claim 9, wherein each of the at least two heat exchanger plates are disposed at a distance of at least three inches from each other. 11. The method of bulk polymerization of claim 4, wherein the lid includes a plate hanger assembly disposed along the inner wall surface for attaching each or the at least one heat exchanger plates to the inner wall surface of the lid. 12. The method of bulk polymerization of claim 4, wherein each of the at least one heat exchanger plates is in fluid communication with a coolant inlet conduit and a coolant outlet conduit, thereby facilitating coolant to pass into and out of each of the at least one heat exchanger plates. 13. The method of bulk polymerization of claim 12, wherein each of the coolant inlet conduits is in fluid communication with a coolant inlet manifold and each of the coolant outlet conduits is in fluid communication with a coolant outlet manifold. 14. The method of bulk polymerization of claim 13, wherein the coolant inlet manifold and the coolant outlet manifold are in fluid communication with the coolant source. 15. The method of bulk polymerization of claim 4, wherein the inner wall surface of the lid includes at least 6 heat exchanger plates. 16. The method of bulk polymerization of claim 4, wherein the lid includes a heat exchanger, the heat exchanger having a heat exchanger assembly, a coolant inlet manifold in fluid communication with a coolant source, at least one coolant inlet conduit in fluid communication with at least one heat exchanger plate, at least one coolant outlet conduit in fluid communication with each of the at least one heat exchanger plates and in fluid communication with a coolant outlet manifold, the coolant outlet manifold being in fluid communication with the coolant source. 17. The method of bulk polymerization of claim 16, wherein the reservoir cavity is formed by four side wall surfaces, two of the four side wall surfaces of the reservoir cavity having a length of at least two feet and a height of at least two feet, the other two of the four side wall surfaces of the reservoir cavity having a length of at least three feet and a height of at least two feet, and the lid is rectangularly shaped having a length and a width, the length at least three feet and width being at least two feet. 18. The method of bulk polymerization of claim 4, wherein a removable film is disposed on at least one of the at least one heat exchanger plates prior to contacting said at least one of the at least one heat exchanger plates with the polymerization reaction mixture. 19. The method of bulk polymerization of claim 16, further comprising at least one coolant inlet manifold in fluid communication with the coolant source and at least one coolant outlet manifold in fluid communication with the coolant source. 20. The method of bulk polymerization of claim 19, further comprising at least one coolant inlet conduit in fluid communication with the at least one coolant inlet manifold and in fluid communication with each of the at least one heat exchanger plates, and at least one coolant outlet conduit in fluid communication with the at least one coolant outlet manifold and in fluid communication with each of the at least one heat exchanger plates. 21. The method of bulk polymerization of claim 1, wherein the reservoir cavity is formed by four walls, each of the four walls having a length and a width, the length being at least 4 feet and the width being at least 2 feet. 22. The method of bulk polymerization of claim 1, wherein a removable film is disposed on at least one of the least one heat exchanger plates prior to contacting said at least one of the at least one heat exchanger plates with the polymerization reaction mixture. 23. The method of bulk polymerization of claim 1, wherein the reservoir further includes a lid, and the lid is placed over the reservoir cavity to close the reservoir cavity prior to forming the polymerization reaction mixture. 24. A method of bulk polymerization of at least one alpha olefin monomer to form bulk polyalphaolefin polymer having designed properties, the method comprising the steps of: forming a reservoir cavity comprising a plurality of side walls and a bottom wall, inserting into the reservoir cavity at least one heat exchanger plate, the heat exchanger plate comprising an exchanger cavity in fluid communication with a coolant source and a plurality of exterior surfaces, combining at least one alpha olefin monomer having a mass and at least one catalyst having a mass to form an exothermic polymerization reaction mixture having a combined mass, injecting the combined mass of the polymerization reaction mixture into the reservoir cavity, dispersing the combined mass of the polymerization reaction mixture among the side walls, the bottom and the plurality of exterior surfaces of the heat exchanger plate such that the center most region of the combined mass of the polymerization reaction mixture is sufficiently cooled to synthesize bulk amounts of polyalphaolefin polymer with the designed properties, removing sufficient heat from the combined mass of the polymerization reaction mixture within the reservoir to control the exothermic polymerization reaction of the combined mass of the polymerization reaction mixture for maintaining a temperature suitable for production of polyalphaolefin polymer with the designed properties, and for a time sufficient to obtain such polymer, removing the at least one heat exchanger plate from the reservoir cavity for disengaging the at least one heat exchanger plate from the bulk polyalphaolefin polymer such that the at least one heat exchanger plate can be reused, and, removing the bulk polyalphaolefin polymer from the reservoir cavity such that the reservoir cavity comprising the plurality of side walls and the bottom wall can be reused whereby voluminous amounts of polyalphaolefin polymer with the designed properties are created. 25. The method of bulk polymerization of at least one alpha olefin monomer to form bulk polyalphaolefin polymer having designed properties as defined in claim 24 wherein the step of removing sufficient heat from the combined mass of the polymerization reaction mixture further comprises achieving a conversion level of at least a majority of the mass of the at least one alpha olefin monomer based on the combined mass of the polymerization reaction mixture. 26. A method of bulk polymerization of an alpha olefin monomer to form bulk polyalphaolefin polymer having designed properties, the method comprising the steps of: forming a reservoir cavity comprising a plurality of side walls and a bottom wall, disposing a removable film on a heat exchanger plate, the heat exchanger plate having an exchanger cavity and a plurality of exterior surfaces, the exchanger cavity is in fluid communication with a coolant source, inserting into the reservoir cavity the heat exchanger plate with the removable film disposed thereupon, combining the alpha olefin monomer having a mass and a catalyst having a mass to form an exothermic polymerization reaction mixture having a combined mass, injecting the polymerization reaction mixture into the reservoir cavity, dispersing the combined mass of the polymerization reaction mixture among the side walls, the bottom and the plurality of exterior surfaces of the heat exchanger plate for engagement of the combined mass of the polymerization reaction mixture with the removable film, removing sufficient heat from the combined mass of the polymerization reaction mixture such that the center most region of the combined mass of the polymerization reaction mixture is sufficiently cooled to synthesize bulk amounts of polyalphaolefin polymer with the designed properties, continuing removing heat from the combined mass of the polymerization reaction mixture for a length of time necessary for the alpha olefin monomer to be polymerized into bulk polyalphaolefin polymer with the designed properties, withdrawing the heat exchanger plate from the reservoir cavity for disengaging the heat exchanger plate from the removable film and thus from the bulk polyalphaolefin polymer such that the heat exchanger plate can be reused, and, removing the bulk polyalphaolefin polymer from the reservoir cavity such that the reservoir cavity comprising a plurality of side walls and a bottom wall can be reused whereby voluminous amounts of polyalphaolefin polymer with the designed properties are created. 27. The method of bulk polymerization of at least one alpha olefin monomer to form bulk polyalphaolefin polymer having designed properties as defined in claim 26 wherein the step of removing sufficient heat from the combined mass of the polymerization reaction mixture further comprises achieving a conversion level of at least a majority of the mass of the alpha olefin monomer based on the combined mass of the polymerization reaction mixture.
해당 특허가 속한 카테고리에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
IPC | Description |
---|---|
A | 생활필수품 |
A62 | 인명구조; 소방(사다리 E06C) |
A62B | 인명구조용의 기구, 장치 또는 방법(특히 의료용에 사용되는 밸브 A61M 39/00; 특히 물에서 쓰이는 인명구조 장치 또는 방법 B63C 9/00; 잠수장비 B63C 11/00; 특히 항공기에 쓰는 것, 예. 낙하산, 투출좌석 B64D; 특히 광산에서 쓰이는 구조장치 E21F 11/00) |
A62B-1/08 | .. 윈치 또는 풀리에 제동기구가 있는 것 |
내보내기 구분 |
|
---|---|
구성항목 |
관리번호, 국가코드, 자료구분, 상태, 출원번호, 출원일자, 공개번호, 공개일자, 등록번호, 등록일자, 발명명칭(한글), 발명명칭(영문), 출원인(한글), 출원인(영문), 출원인코드, 대표IPC 관리번호, 국가코드, 자료구분, 상태, 출원번호, 출원일자, 공개번호, 공개일자, 공고번호, 공고일자, 등록번호, 등록일자, 발명명칭(한글), 발명명칭(영문), 출원인(한글), 출원인(영문), 출원인코드, 대표출원인, 출원인국적, 출원인주소, 발명자, 발명자E, 발명자코드, 발명자주소, 발명자 우편번호, 발명자국적, 대표IPC, IPC코드, 요약, 미국특허분류, 대리인주소, 대리인코드, 대리인(한글), 대리인(영문), 국제공개일자, 국제공개번호, 국제출원일자, 국제출원번호, 우선권, 우선권주장일, 우선권국가, 우선권출원번호, 원출원일자, 원출원번호, 지정국, Citing Patents, Cited Patents |
저장형식 |
|
메일정보 |
|
안내 |
총 건의 자료가 검색되었습니다. 다운받으실 자료의 인덱스를 입력하세요. (1-10,000) 검색결과의 순서대로 최대 10,000건 까지 다운로드가 가능합니다. 데이타가 많을 경우 속도가 느려질 수 있습니다.(최대 2~3분 소요) 다운로드 파일은 UTF-8 형태로 저장됩니다. ~ |
Copyright KISTI. All Rights Reserved.
AI-Helper는 오픈소스 모델을 사용합니다. 사용하고 있는 오픈소스 모델과 라이센스는 아래에서 확인할 수 있습니다.
AI-Helper uses Open Source Models. You can find the source code of these open source models, along with applicable license information below. (helpdesk@kisti.re.kr)
OpenAI의 API Key를 브라우저에 등록하여야 ChatGPT 모델을 사용할 수 있습니다.
등록키는 삭제 버튼을 누르거나, PDF 창을 닫으면 삭제됩니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.