IPC분류정보
국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
UP-0382048
(2006-05-07)
|
등록번호 |
US-7823398
(2010-11-22)
|
발명자
/ 주소 |
|
인용정보 |
피인용 횟수 :
5 인용 특허 :
6 |
초록
Improvements to a rotating-vane integral compressor/expander are outlined to significantly improve efficiency. A method to simply achieve variable-flow operation is also described.
대표청구항
▼
I claim: 1. A rotating vane machine operating on a refrigeration, air-conditioning, or heat-pump cycle, wherein compression occurs within a compressor casing containing a cylindrical compressor rotor, and expansion occurs first in a valve or control device and thereafter within an expander casing c
I claim: 1. A rotating vane machine operating on a refrigeration, air-conditioning, or heat-pump cycle, wherein compression occurs within a compressor casing containing a cylindrical compressor rotor, and expansion occurs first in a valve or control device and thereafter within an expander casing containing a cylindrical expander rotor, said compressor and expander casings being located axially relative to each other, said rotors having flat end faces and being keyed to a common shaft, said compressor casing and expander casing being separated by a plate containing a seal riding on said shaft that inhibits leakage from said compressor casing to said expander casing and also in the reverse direction, the shaft being configured with a stepped up and stepped down portion between said compressor and said expander rotors, the seal is riding on the stepped down portion, the separating plate is configured in such a way that the plate is closely fitting on the seal and the stepped down portion of the shaft between the compressor and the expander rotors, said compressor rotor being driven by an external power source and said expander rotor returning expansion energy of the refrigerant to said shaft to reduce required input power, said shaft being supported in bearings, said rotors containing radial slots containing substantially rectangular vanes which have a close fitting arrangement with said casings and plate surfaces that abut said flat rotor faces, said rotors being eccentrically located within said casing components such that an exceedingly close but non-touching relationship exists between said rotors and casing components at their minimum clearance, said vanes having axial lengths and number of vanes to ensure the required volume ratios are achieved for said refrigeration, air-conditioning, or heat-pump cycle, said shaft containing two shoulders which together with two thrust bearings limit axial movement of said compressor and expander rotors to avoid rubbing friction against adjacent flat faces of said compressor and expander casings and separating flat plate, yet maintain fine clearances. 2. A rotating vane machine operating on a refrigeration, air-conditioning, or heat-pump cycle, wherein compression occurs within a compressor casing component containing a cylindrical compressor rotor, and expansion occurs first in a valve or control device and thereafter within an expander casing component containing a cylindrical expander rotor, said compressor and expander casing components being located axially relative to each other, said rotors being either joined or separated, where separated the shaft being configured with a stepped up and stepped down portion between said compressor and said expander rotors, the seal is riding on the stepped down portion, the separating plate is configured so that the plate is closely fitting on the seal and the stepped down portion of the shaft and between the compressor and the expander rotors, said rotors having flat end faces and being keyed to a common shaft, said compressor rotor being driven by an external power source and said expander rotor returning expansion energy of the refrigerant to said shaft to reduce required input power, said shaft being supported in bearings, said rotors containing radial slots containing substantially rectangular vanes which have a close fitting arrangement with said casings and plate surfaces that abut said flat rotor faces, said rotors being eccentrically located within said casing components such that an exceedingly close but non-touching relationship exists between said rotors and casing components at their minimum clearance, said vanes having axial lengths and number of vanes to ensure the required volume ratios are achieved for said refrigeration, air-conditioning, or heat-pump cycle, said shaft driving an oil pump that supplies oil into the fine clearances at the minimum clearances and fine clearances between rotating and stationary components to suppress internal leakage of refrigerant vapor, said oil being supplied at a pressure higher than opposing refrigerant pressure to ensure oil flooding of said clearances. 3. The vane-type compressor/expander of claim 2, where the vane lateral edges are recessed and allowed to fill with oil during part of rotation to suppress refrigerant leakage, and to rotor slots to ensure vane lubrication. 4. The vane-type compressor/expander of claim 2 with a valve or control device upstream of the expander, said control device being constrained to operate within a higher range of output pressures corresponding to a high range of refrigerant densities supplied to said expander, thus the refrigerant flow becomes the compressor output and variable cooling is obtained by on/off control. 5. The vane-type compressor/expander of claim 2 with a control device or valve upstream of the expander, where variable volume control is achieved by adjusting the control device outlet pressure and hence expander inlet pressure and thus two-phase fluid density in a lower range thereby variably controlling the refrigerant flow through the compressor/expander, thereby allowing continuous operation at the reduced load rather than by on/off control.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.