$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

특허 상세정보

Purebred and hybrid electric VTOL tilt rotor aircraft

국가/구분 United States(US) Patent 등록
국제특허분류(IPC7판) B64C-027/28    B64C-029/00    B64D-041/00    B64D-035/00   
미국특허분류(USC) 244/012.4; 244/058; 244/060
출원번호 US-0693657 (2010-01-26)
등록번호 US-8469306 (2013-06-25)
발명자 / 주소
출원인 / 주소
대리인 / 주소
    Fish & Associates, PC
인용정보 피인용 횟수 : 24  인용 특허 : 10
초록

Electrically powered Vertical Takeoff and Landing (VTOL) aircraft are presented. Contemplated VTOL aircraft can include one or more electrical energy stores capable of delivering electrical power to one or more electric motors disposed within one or more rotor housings, where the motors can drive the rotors. The VTOL aircraft can also include one or more sustainer energy/power sources (e.g., batteries, engines, generators, fuel-cells, semi-cells, etc.) capable of driving the motors should the energy stores fail or deplete. Various VTOL configurations are...

대표
청구항

1. A vertical takeoff and landing (VTOL), electrically-powered, winged aircraft, comprising: first and second tiltable nacelles disposed on a left wing and a right wing of the aircraft, respectively, each of the first and second nacelles configured to tilt with respect to the left and right wing, respectively;first and second sets of electric motors disposed in the respective first and second nacelles;first and second rotors mounted on the first and second nacelles, respectively, the first and second electric rotors configured to collectively produce a t...

이 특허를 인용한 특허 피인용횟수: 24

  1. Marrinan, Patrick Michael; Becker, Thomas Lee; Murrow, Kurt David; Yao, Jixian. AFT engine nacelle shape for an aircraft. USP2017119815560.
  2. Becker, Thomas Lee; Murrow, Kurt David; Marrinan, Patrick Michael; Miller, Brandon Wayne. Aft engine for an aircraft. USP2017119821917.
  3. Becker, Thomas Lee; Murrow, Kurt David; Marrinan, Patrick Michael; Miller, Brandon Wayne. Aft engine for an aircraft. USP20180710017270.
  4. Marrinan, Patrick Michael; Becker, Thomas Lee; Murrow, Kurt David. Aft engine for an aircraft. USP2018059957055.
  5. Marrinan, Patrick Michael; Becker, Thomas Lee; Murrow, Kurt David; Yao, Jixian. Aircraft having an aft engine. USP2017059637217.
  6. Smith, Dudley E.; Hitte, Cory M.; Marshall, Bryan; Fenny, Carlos Alexander. Autorotative enhancement system. USP20180910077105.
  7. Smith, Dudley E.; Hitte, Cory M.; Marshall, Bryan; Fenny, Carlos Alexander. Autorotative enhancement system. USP2016129522730.
  8. Smith, Dudley E.; Hitte, Cory M.; Marshall, Bryan; Fenny, Carlos Alexander. Autorotative enhancement system. USP2015119180964.
  9. Kupiszewski, Thomas; Miller, Brandon Wayne; Vondrell, Randy M.. Electric propulsion system. USP20181010093428.
  10. Miller, Brandon Wayne; Vondrell, Randy M.; Marrinan, Patrick Michael; Gemin, Paul Robert; Moore, Nicholas Taylor. Electric propulsion system for an aircraft. USP20181110137981.
  11. Kupiszewski, Thomas; Miller, Brandon Wayne; Vondrell, Randy M.; Gemin, Paul Robert. Embedded electric machine. USP20180910071811.
  12. Armstrong, Michael James; Bollman, Andrew Mark. Fault identification and isolation in an electric propulsion system. USP20190310243355.
  13. Hamel, Jeffrey Anthony; Murrow, Kurt David. Gas-electric propulsion system for an aircraft. USP20180610000293.
  14. Connaulte, Matthieu; Mercier, Christian; Mariotto, Damien. Method of assisting a pilot of a single-engined rotary wing aircraft during a stage of flight in autorotation. USP2015069045223.
  15. Marrinan, Patrick Michael; Becker, Thomas Lee; Murrow, Kurt David; Yao, Jixian. Non-axis symmetric aft engine. USP2018029884687.
  16. Niergarth, Daniel Alan; Vondrell, Randy M.; Miller, Brandon Wayne; Marrinan, Patrick Michael. Propulsion engine for an aircraft. USP20190410252810.
  17. Vondrell, Randy M.; Polakowski, Matthew Ryan; Murrow, Kurt David; Crabtree, Glenn. Propulsion system for an aircraft. USP2017099764848.
  18. Lauder, Timothy Fred; Boyle, Patrick. Rotor systems for rotorcraft. USP20181210150567.
  19. Ouellette, Rich P.. Short takeoff and landing aircraft. USP2017099771163.
  20. North, David D.; Aull, Mark J.; Fredericks, William J.; Moore, Mark D.; Rothhaar, Paul M.; Hodges, William T.; Johns, Zachary R.. Tri-rotor aircraft capable of vertical takeoff and landing and transitioning to forward flight. USP20180910071801.
  21. Bak, Jeong-Gyu; Cho, Jinsoo; Kim, Boseong; Yun, Senghyun; Won, Sunghong; Jeong, Tae-Chul; Cho, Sooyoung; Lee, Geunho; Park, Kyusung; Ha, Juhyung; Moon, Changmo; Beck, Sunho; Meang, Changjun; Lee, Hanki; Kim, Minjun; Lee, Dain. Vertical take-off and landing aircraft using hybrid electric propulsion system. USP2018049932118.
  22. Bak, Jeong-Gyu; Cho, Jinsoo; Kim, Boseong; Yun, Senghyun; Won, Sunghong; Jeong, Tae-Chul; Cho, Sooyoung; Lee, Geunho; Park, Kyusung; Ha, Juhyung; Moon, Changmo; Beck, Sunho; Meang, Changjun; Lee, Hanki; Kim, Minjun; Lee, Dain. Vertical take-off and landing aircraft using hybrid-electric propulsion system. USP20180710035604.
  23. Bak, Jeong-Gyu; Cho, Jinsoo; Kim, Boseong; Yun, Senghyun; Won, Sunghong; Jeong, Tae-Chul; Cho, Sooyoung; Lee, Geunho; Park, Kyusung; Ha, Juhyung; Moon, Changmo; Beck, Sunho; Meang, Changjun; Lee, Hanki; Kim, Minjun; Lee, Dain. Vertical take-off and landing aircraft using hybrid-electric propulsion system. USP20181010099794.
  24. Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.; Rothhaar, Paul M.; North, David D.; Langford, William M.; Laws, Christopher T.; Hodges, William T.; Johns, Zachary R.; Webb, Sandy R.. Vertical take-off and landing vehicle with increased cruise efficiency. USP2016109475579.