국가/구분 |
United States(US) Patent
등록
|
국제특허분류(IPC7판) |
|
출원번호 |
US-0252011
(2011-10-03)
|
등록번호 |
US-8567726
(2013-10-29)
|
발명자
/ 주소 |
- Lacy, Douglas S.
- Kordel, Jan A.
- Dovey, John V.
- Balzer, Michael A.
- Sakurai, Seiya
- Huynh, Neal V.
|
출원인 / 주소 |
|
대리인 / 주소 |
|
인용정보 |
피인용 횟수 :
2 인용 특허 :
234 |
초록
▼
Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods are disclosed. An aircraft system in accordance with one embodiment of the invention includes a wing and a trailing edge device coupled to the wing. The trailing edge device can be movab
Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods are disclosed. An aircraft system in accordance with one embodiment of the invention includes a wing and a trailing edge device coupled to the wing. The trailing edge device can be movable relative to the wing between a stowed position and a deployed position, with the trailing edge device having a leading edge, a trailing edge, an upper surface, and a lower surface. The upper surface can have an intersection point with the wing when the trailing edge device is in the stowed position. The motion of the trailing edge device relative to the wing can include rotational motion about a hinge line positioned forward of the intersection point, and a gap can be positioned between the trailing edge of the wing and the leading edge of the trailing edge device when the trailing edge device is in the deployed position.
대표청구항
▼
1. A method for controlling a surface of an aircraft, comprising: moving an intermediate control surface trailing edge device, the control surface trailing edge device including a control surface, from a stowed position to a deployed position by rotating the trailing edge device about a hinge line l
1. A method for controlling a surface of an aircraft, comprising: moving an intermediate control surface trailing edge device, the control surface trailing edge device including a control surface, from a stowed position to a deployed position by rotating the trailing edge device about a hinge line located forward of an intersection point between an upper surface of the trailing edge device and the control surface so as to open an airflow gap between a leading edge of the trailing edge device and the control surface;allowing freestream air to pass through the gap while the trailing edge device is in the deployed position, wherein the trailing edge device has a trailing edge, a chord length C between the leading edge and the trailing edge, and an external surface that includes the upper surface and a lower surface, and wherein the intersection point between the trailing edge device and the surface results when the trailing edge device is in the stowed position; andmoving an inboard trailing edge device located at a portion of the wing that has a minimal sweep angle and an outboard trailing edge device located at a portion of the wing having a significant sweep angle with the intermediate control surface, the moving including a stowed position, a partially deployed position, and a fully deployed position, wherein the intermediate trailing edge device, the inboard trailing edge device, and the outboard trailing edge device comprise a composite trailing edge and a composite leading edge, the moving configured such that as the intermediate trailing edge device, the inboard trailing edge device, and the outboard trailing edge device move from the stowed position to the partially deployed position to the fully deployed position, the composite trailing edge becomes successively more stepped and the composite leading edge becomes successively less stepped. 2. The method of claim 1 wherein rotating the intermediate trailing edge device includes rotating the trailing edge device about a hinge line located forward of the leading edge of the trailing edge device. 3. The method of claim 1 wherein moving the intermediate trailing edge device includes rotating the trailing edge device downwardly from the stowed position, and wherein the method further comprises rotating the trailing edge device upwardly from the stowed position. 4. The method of claim 1, further comprising actively controlling a rolling motion of the aircraft by deflecting the trailing edge device. 5. The method of claim 1, further comprising actively controlling a spanwise lift distribution over the control surface by deflecting the trailing edge device. 6. The method of claim 1 wherein the intermediate trailing edge device has a device chord length, and wherein the method further comprises stowing the trailing edge device by positioning the trailing edge device with the control surface overlapping the trailing edge device by 20% or less of the device chord length. 7. The method of claim 1 wherein flow surfaces of the intermediate trailing edge device exposed to the freestream flow adjacent to the control surface are generally rigid, and wherein moving the trailing edge device does not include a changing a shape of the surfaces. 8. The method of claim 1 wherein the control surface includes a spoiler and wherein opening an airflow gap includes opening an airflow gap between the leading edge of the trailing edge device and the spoiler. 9. The method of claim 1 wherein the moving the intermediate trailing edge device includes moving the trailing edge device along a path that converges toward a neighboring trailing edge device of the control surface, and wherein rotating the trailing edge device includes rotating the trailing edge device about a hinge line positioned outside an external surface of the trailing edge device. 10. A method for controlling an aircraft, comprising: moving an intermediate element surface trailing edge device, the intermediate element surface trailing edge device having a surface, from a stowed position to a deployed position by rotating the trailing edge device about a hinge line that is located (a) outside an external contour of the trailing edge device, and (b) forward of an intersection point between an upper surface of the trailing edge device and the surface so as to open an airflow gap between a leading edge of the trailing edge device and the surface, wherein the airflow gap is a single airflow gap between the trailing edge device and the surface at a given spanwise location of the surface; and allowing freestream air to pass though the gap while the trailing edge device is in the deployed position, wherein the trailing edge device has a trailing edge, a chord length C between the leading edge and the trailing edge, and an external surface that includes the upper surface and a lower surface, and wherein the intersection point between the trailing edge device and the surface results when the trailing edge device is in the stowed position, andmoving the intermediate, gapped trailing edge device with an inboard trailing edge device located at a portion of the wing that has a minimal sweep angle and an outboard trailing edge device located at a portion of the wing having a significant sweep angle, the moving including a stowed position, a partially deployed position, and a fully deployed position, wherein the intermediate trailing edge device, the inboard trailing edge device, and the outboard trailing edge device comprise a composite trailing edge and a composite leading edge, the moving configured such that as the intermediate trailing edge device, the inboard trailing edge device, and the outboard trailing edge device move from the stowed position to the partially deployed position to the fully deployed position, the composite trailing edge becomes successively more stepped and the composite leading edge becomes successively less stepped . 11. The method of claim 10 wherein the moving the trailing edge device includes moving the trailing edge device along a path that converges toward a neighboring trailing edge device of the surface, and wherein rotating the trailing edge device includes rotating the trailing edge device about a hinge line positioned outside an external surface of the trailing edge device. 12. A method for providing aerodynamic control of an aircraft, comprising: moving an intermediate single element trailing edge device of a control surface from a stowed position to a deployed position by rotating the trailing edge device about a hinge line that is located (a) outside an external contour of the trailing edge device, and (b) forward of an intersection point between an upper surface of the trailing edge device and the control surface so as to open an airflow gap between a leading edge of the trailing edge device and the control surface, wherein the airflow gap is a single airflow gap between the trailing edge device and the control surface at a given spanwise location of the control surface; and allowing freestream air to pass though the gap while the trailing edge device is in the deployed position, wherein the trailing edge device has a trailing edge, a chord length C between the leading edge and the trailing edge, and an external surface that includes the upper surface and a lower surface, and wherein the intersection point between the trailing edge device and the surface results when the trailing edge device is in the stowed position, andmoving an inboard trailing edge device located at a portion of the wing that has a minimal sweep angle and an outboard trailing edge device located at a portion of the wing having a significant sweep angle with the intermediate trailing edge device, the moving including a stowed position, a partially deployed position, and a fully deployed position, wherein the intermediate trailing edge device, the inboard trailing edge device, and the outboard trailing edge device comprise a composite trailing edge and a composite leading edge, the moving configured such that as the intermediate trailing edge device, the inboard trailing edge device, and the outboard trailing edge device move from the stowed position to the partially deployed position to the fully deployed position, the composite trailing edge becomes successively more stepped and the composite leading edge becomes successively less stepped. 13. The method of claim 12 wherein the moving the trailing edge device includes moving the trailing edge device along a path that converges toward a neighboring trailing edge device of the control surface, and wherein rotating the trailing edge device includes rotating the trailing edge device about a hinge line positioned outside an external surface of the trailing edge device.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.