[미국특허]
Activator supports impregnated with group VIII transition metals for polymer property control
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
C08F-002/00
C08F-004/606
C08F-004/6192
C08F-004/646
C08F-004/70
C08F-002/38
C08F-010/02
출원번호
US-0789816
(2013-03-08)
등록번호
US-8623973
(2014-01-07)
발명자
/ 주소
McDaniel, Max P.
Yang, Qing
Crain, Tony R.
Collins, Kathy S.
출원인 / 주소
Chevron Phillips Chemical Company LP
대리인 / 주소
Merchant & Gould P.C.
인용정보
피인용 횟수 :
57인용 특허 :
50
초록▼
Methods for controlling properties of an olefin polymer using a Group VIII transition metal-modified activator-support are disclosed. The melt index of the polymer can be decreased and the molecular weight of the polymer can be increased via the addition of the transition metal-modified activator-su
Methods for controlling properties of an olefin polymer using a Group VIII transition metal-modified activator-support are disclosed. The melt index of the polymer can be decreased and the molecular weight of the polymer can be increased via the addition of the transition metal-modified activator-support to the polymerization reactor system.
대표청구항▼
1. A method for reducing a melt flow property of an olefin polymer, the method comprising: (a) contacting a catalyst composition with an olefin monomer and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce the olefin polymer,wherein the cataly
1. A method for reducing a melt flow property of an olefin polymer, the method comprising: (a) contacting a catalyst composition with an olefin monomer and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce the olefin polymer,wherein the catalyst composition comprises a metallocene compound, an activator-support, and an optional co-catalyst; and(b) introducing an amount of a transition metal-modified activator-support into the polymerization reactor system to reduce the melt flow property of the olefin polymer,wherein the transition metal-modified activator-support comprises a solid oxide treated with an electron-withdrawing anion and impregnated with a Group VIII transition metal, and wherein the electron-withdrawing anion comprises sulfate and/or fluoride. 2. The method of claim 1, wherein: the melt flow property is melt index, and the reduction in melt index of the olefin polymer is at least 10%;the melt flow property is high load melt index, and the reduction in high load melt index of the olefin polymer is at least 10%; orboth. 3. The method of claim 1, wherein: the melt flow property is melt index, and the reduction in melt index of the olefin polymer is from about 15% to about 95%;the melt flow property is high load melt index, and the reduction in high load melt index of the olefin polymer is from about 15% to about 95%; orboth. 4. The method of claim 1, wherein the activator-support comprises fluorided alumina, sulfated alumina, fluorided silica-alumina, sulfated silica-alumina, fluorided silica-zirconia, sulfated silica-zirconia, fluorided silica-titania, fluorided silica-coated alumina, sulfated silica-coated alumina, or any combination thereof. 5. The method of claim 1, wherein the transition metal-modified activator-support comprises: a solid oxide comprising silica, alumina, silica-alumina, silica-coated alumina, or any mixture thereof;an electron-withdrawing anion comprising sulfate and/or fluoride; and impregnated witha Group VIII transition metal comprising cobalt, nickel, palladium, platinum, or a combination thereof. 6. The method of claim 1, wherein the catalyst composition comprises a co-catalyst, the co-catalyst comprising an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, an organoaluminum compound, an organozinc compound, an organomagnesium compound, an organolithium compound, or any combination thereof. 7. The method of claim 6, wherein the co-catalyst comprises an organoaluminum compound, the organoaluminum compound comprising trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, diisobutylaluminum hydride, diethylaluminum ethoxide, diethylaluminum chloride, or any combination thereof. 8. The method of claim 1, wherein the catalyst composition is contacted with ethylene and an olefin comonomer comprising 1-butene, 1-hexene, 1-octene, or a mixture thereof. 9. The method of claim 1, wherein the amount of the transition metal-modified activator-support added to the polymerization reactor system is in a range of the weight ratio of the Group VIII transition metal to the metallocene compound from about 10:1 to about 1:1000. 10. The method of claim 1, wherein a range of the weight ratio of the Group VIII transition metal to the solid oxide is from about 1:1000 to about 1:10. 11. The method of claim 1, wherein the polymerization reactor system comprises a slurry reactor, gas-phase reactor, solution reactor, or any combination thereof. 12. A method for increasing a molecular weight parameter of an olefin polymer, the method comprising: (a) contacting a catalyst composition with an olefin monomer and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce the olefin polymer,wherein the catalyst composition comprises a metallocene compound, an activator-support, and an optional co-catalyst; and(b) introducing an amount of a transition metal-modified activator-support into the polymerization reactor system to increase the molecular weight parameter of the olefin polymer,wherein the transition metal-modified activator-support comprises a solid oxide treated with an electron-withdrawing anion and impregnated with a Group VIII transition metal, and wherein the electron-withdrawing anion comprises sulfate and/or fluoride. 13. The method of claim 12, wherein: the molecular weight parameter is weight-average molecular weight (Mw), and the increase in Mw of the olefin polymer is at least 5%;the molecular weight parameter is z-average molecular weight (Mz), and the increase in Mz of the olefin polymer is at least 5%; orboth. 14. The method of claim 13, wherein: the catalyst composition is contacted with ethylene and an olefin comonomer comprising a C3-C10 alpha-olefin;the Group VIII transition metal comprises cobalt, nickel, palladium, platinum, or a combination thereof. 15. An olefin polymerization process, the process comprising contacting a catalyst composition with an olefin monomer and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer, wherein the catalyst composition comprises a metallocene compound, a transition metal-modified activator-support, and an optional co-catalyst, wherein the transition metal-modified activator-support comprises a solid oxide treated with an electron-withdrawing anion and impregnated with a Group VIII transition metal, and wherein the electron-withdrawing anion comprises sulfate and/or fluoride; andwherein a melt index (MI) of the olefin polymer produced by the process is at least 10% less than a MI of an olefin polymer obtained under the same polymerization conditions using an activator-support without the Group VIII transition metal. 16. The process of claim 15, wherein: a HLMI of the olefin polymer produced by the process is from 10% to about 95% less than a HLMI of an olefin polymer obtained under the same polymerization conditions using an activator-support without the Group VIII transition metal;a Mw of the olefin polymer produced by the process is at least 5% greater than a Mw of an olefin polymer obtained under the same polymerization conditions using an activator-support without the Group VIII transition metal;the MI of the olefin polymer produced by the process is from 15% to about 90% less than the MI of an olefin polymer obtained under the same polymerization conditions using an activator-support without the Group VIII transition metal; orany combination thereof. 17. The process of claim 16, wherein: the catalyst composition is contacted with ethylene and an olefin comonomer comprising a C3-C10 alpha-olefin;the catalyst composition comprises a co-catalyst;the Group VIII transition metal comprises cobalt, nickel, palladium, platinum, or a combination thereof; andthe polymerization reactor system comprises a slurry reactor, gas-phase reactor, solution reactor, or any combination thereof. 18. The process of claim 17, wherein: the catalyst composition comprises an organoaluminum compound;the solid oxide comprises silica, alumina, silica-alumina, silica-coated alumina, or a combination thereof;anda range of the weight ratio of the Group VIII transition metal to the solid oxide is from about 1:1000 to about 1:10. 19. The process of claim 16, wherein: the polymerization reactor system comprises a loop slurry reactor; andthe olefin polymer is an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer. 20. The process of claim 19, wherein the olefin polymer has: a melt index in a range from 0 to about 5 g/10 min;a density in a range from about 0.89 g/cm3 to about 0.96 g/cm3; anda Mw in a range from about 100,000 to about 700,000 g/mol. 21. The process of claim 15, wherein: the catalyst composition is contacted with ethylene and an olefin comonomer comprising a C3-C10 alpha-olefin;the catalyst composition comprises a co-catalyst;the Group VIII transition metal comprises cobalt, nickel, palladium, platinum, or a combination thereof; andthe polymerization reactor system comprises a slurry reactor, gas-phase reactor, solution reactor, or any combination thereof. 22. The process of claim 21, wherein: a HLMI of the olefin polymer produced by the process is from 10% to about 95% less than a HLMI of an olefin polymer obtained under the same polymerization conditions using an activator-support without the Group VIII transition metal;the MI of the olefin polymer produced by the process is from 15% to about 95% less than the MI of an olefin polymer obtained under the same polymerization conditions using an activator-support without the Group VIII transition metal; orboth. 23. The process of claim 22, wherein: the olefin comonomer comprises 1-butene, 1-hexene, 1-octene, or a mixture thereof;the Group VIII transition metal comprises cobalt, nickel, or a combination thereof and the solid oxide comprises silica, alumina, silica-alumina, silica-coated alumina, or a combination thereof. 24. The process of claim 23, wherein: the metallocene compound comprises an unbridged zirconium or hafnium based metallocene compound containing two cyclopentadienyl groups, two indenyl groups, or a cyclopentadienyl and an indenyl group;the co-catalyst comprises an organoaluminum compound; andthe solid oxide comprises alumina, silica-coated alumina, or a combination thereof. 25. The process of claim 23, wherein: the metallocene compound comprises a bridged zirconium or hafnium based metallocene compound with a cyclopentadienyl group and a fluorenyl group;the co-catalyst comprises an organoaluminum compound; andthe solid oxide comprises alumina, silica-coated alumina, or a combination thereof. 26. The process of claim 23, wherein the electron-withdrawing anion comprises sulfate. 27. The process of claim 26, wherein a range of the weight ratio of the Group VIII transition metal to the solid oxide is from about 1:1000 to about 1:10.
Hottovy John D. (Bartlesville OK) Lawrence Frederick C. (Bartlesville OK) Lowe Barry W. (Bartlesville OK) Fangmeier James S. (Bartlesville OK), Apparatus and method for producing ethylene polymer.
McDaniel Max P. ; Benham Elizabeth A. ; Martin Shirley J. ; Collins Kathy S. ; Smith James L. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel, Max P.; Benham, Elizabeth A.; Martin, Shirley J.; Collins, Kathy S.; Smith, James L.; Hawley, Gil R.; Wittner, Christopher E.; Jensen, Michael D., Compositions that can produce polymers.
Yang, Qing; Jayaratne, Kumudini C.; Jensen, Michael D.; McDaniel, Max P.; Martin, Joel L.; Thorn, Matthew G.; Lanier, Jerry T.; Crain, Tony R., Dual metallocene catalysts for polymerization of bimodal polymers.
Hottovy John D. ; Hensley Harvey D. ; Przelomski David J. ; Cymbaluk Teddy H. ; Franklin ; III Robert K. ; Perez Ethelwoldo P., High solids slurry polymerization.
Jenkins ; III John M. (So. Charleston WV) Jones Russell L. (Chapel Hill NC) Jones Thomas M. (So. Charleston WV) Beret Samil (Danville CA), Method for fluidized bed polymerization.
Shamshoum Edwar S. ; Rauscher David J., Method of olefin polymerization utilizing hydrogen pulsing, products made therefrom, and method of hydrogenation.
Murray, Rex E.; Jayaratne, Kumudini C.; Yang, Qing; Martin, Joel L.; Glass, Gary L., Nano-linked heteronuclear metallocene catalyst compositions and their polymer products.
McDaniel, Max P.; Johnson, Marvin M.; Randolph, Bruce B.; Collins, Kathy S.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst composition.
Collins, Kathy S.; Palackal, Syriac J.; McDaniel, Max P.; Jensen, Michael D.; Hawley, Gil R.; Farmer, Kenneth R.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L., Organometal catalyst compositions.
Max P. McDaniel ; James B. Kimble ; Kathy S. Collins ; Elizabeth A. Benham ; Michael D. Jensen ; Gil R. Hawley ; Joel L. Martin, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; James L. Smith ; Elizabeth A. Benham ; Marvin M. Johnson ; Anthony P. Eaton ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R.; Hsieh, Eric T., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Eaton, Anthony P.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Eaton, Anthony P.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Shveima, Joseph S.; Smith, James L.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions with solid oxide supports treated with fluorine and boron.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Joel L. Martin ; Michael D. Jensen ; Gil R. Hawley, Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Wittner, Christopher E., Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Rohlfing, David C.; Yu, Youlu, Organometal compound catalyst.
Hawley, Gil R.; McDaniel, Max P.; Wittner, Christopher E.; Jensen, Michael D.; Martin, Joel L.; Benham, Elizabeth A.; Eaton, Anthony P.; Collins, Kathy S., Polymerization catalysts.
Yang, Qing; Jensen, Michael D.; Martin, Joel L.; Thorn, Matthew G.; McDaniel, Max P.; Yu, Youlu; Rohlfing, David C., Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching.
Hanson Donald O. (Bartlesville OK), Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator.
Hasegawa Saiki (Mie-ken JPX) Yasuda Hisami (Mie-ken JPX) Yano Akihiro (Mie-ken JPX), Process for producing a
상세보기
Max P. McDaniel ; Anthony P. Eaton ; Elizabeth A. Benham ; Shawn R. Kennedy ; Ashish M. Sukhadia ; Rajendra K. Krishnaswamy ; Kathy S. Collins, Process for producing a polymer composition.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Process for producing polymers using a composition comprising an organometal compound, a treated solid oxide compound, and an organoaluminum compound.
Murray, Rex E.; Beaulieu, William B.; Yang, Qing; Ding, Errun; Glass, Gary L.; Solenberger, Alan L.; Secora, Steven J., Use of hydrogen scavenging catalysts to control polymer molecular weight and hydrogen levels in a polymerization reactor.
Murray, Rex E.; Beaulieu, William B.; Yang, Qing; Ding, Errun; Glass, Gary L.; Solenberger, Alan L.; Secora, Steven J., Use of hydrogen scavenging catalysts to control polymer molecular weight and hydrogen levels in a polymerization reactor.
Hlavinka, Mark L.; Tso, Chung Ching; Inn, Yongwoo; Gagan, Deloris R.; Muninger, Randy S., Dual catalyst system for producing LLDPE copolymers with a narrow molecular weight distribution and improved processability.
Yang, Qing; Greco, Jeff F.; McDaniel, Max P.; Yu, Youlu; Glass, Gary L.; Crain, Tony R., Dual catalyst systems for producing polymers with a broad molecular weight distribution and a uniform short chain branch distribution.
Yang, Qing; Greco, Jeff F.; McDaniel, Max P.; Yu, Youlu; Glass, Gary L.; Crain, Tony R., Dual catalyst systems for producing polymers with a broad molecular weight distribution and a uniform short chain branch distribution.
Yang, Qing; Greco, Jeff F.; McDaniel, Max P.; Yu, Youlu; Glass, Gary L.; Crain, Tony R., Dual catalyst systems for producing polymers with a broad molecular weight distribution and a uniform short chain branch distribution.
Kilgore, Uriah J.; Hutchison, Steven R.; Sydora, Orson L.; Bischof, Steven M.; Fern, Jared T.; McDaniel, Max P., Ethylene oligomerization catalyst systems using chemically-treated solid oxides.
Kilgore, Uriah J.; Hutchison, Steven R.; Sydora, Orson L.; Bischof, Steven M.; Fern, Jared T.; McDaniel, Max P., Ethylene oligomerization catalyst systems using chemically-treated solid oxides.
Greco, Jeff F; Yang, Qing; Rohatgi, Vivek; Hlavinka, Mark L.; Askew, Jim B, Methods for controlling die swell in dual catalyst olefin polymerization systems.
Hlavinka, Mark L.; Yang, Qing; Inn, Yongwoo; Whitte, William M.; Rathman, John R.; Secora, Steven J.; Hert, Daniel G., Polymers with improved toughness and ESCR for large-part blow molding applications.
Hlavinka, Mark L.; Yang, Qing; Inn, Yongwoo; Whitte, William M.; Rathman, John R.; Secora, Steven J.; Hert, Daniel G., Polymers with improved toughness and ESCR for large-part blow molding applications.
Hlavinka, Mark L.; Yang, Qing; Inn, Yongwoo; Whitte, William M.; Rathman, John R.; Secora, Steven J.; Hert, Daniel G., Polymers with improved toughness and ESCR for large-part blow molding applications.
Cruz, Carlos A.; Barr, Jared L.; Praetorius, Jeremy M., Titanium phosphinimide and titanium iminoimidazolidide catalyst systems with activator-supports.
Cruz, Carlos A.; Barr, Jared L.; Praetorius, Jeremy M., Titanium phosphinimide and titanium iminoimidazolidide catalyst systems with activator-supports.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.