[미국특허]
Methods for producing metal-containing sulfated activator-supports
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
B01J-031/02
B01J-031/14
C08F-004/42
출원번호
US-0647411
(2012-10-09)
등록번호
US-8637420
(2014-01-28)
발명자
/ 주소
Yang, Qing
McDaniel, Max P.
Crain, Tony R.
출원인 / 주소
Chevron Philips Chemical Company LP
대리인 / 주소
Merchant & Gould
인용정보
피인용 횟수 :
5인용 특허 :
50
초록▼
The present invention provides metal-containing sulfated activator-supports, and polymerization catalyst compositions employing these activator-supports. Methods for making these metal-containing sulfated activator-supports and for using such components in catalyst compositions for the polymerizatio
The present invention provides metal-containing sulfated activator-supports, and polymerization catalyst compositions employing these activator-supports. Methods for making these metal-containing sulfated activator-supports and for using such components in catalyst compositions for the polymerization of olefins are also provided.
대표청구항▼
1. A process to produce a metal-containing sulfated activator-support, the process comprising: (a) contacting a solid oxide with a sulfate compound to produce a sulfated solid oxide;(b) calcining the sulfated solid oxide to produce a calcined sulfated solid oxide; and(c) contacting the calcined sulf
1. A process to produce a metal-containing sulfated activator-support, the process comprising: (a) contacting a solid oxide with a sulfate compound to produce a sulfated solid oxide;(b) calcining the sulfated solid oxide to produce a calcined sulfated solid oxide; and(c) contacting the calcined sulfated solid oxide with a transition metal compound and a hydrocarbon solvent;to produce the metal-containing sulfated activator-support; wherein the metal-containing sulfated activator-support is not calcined. 2. The process of claim 1, further comprising removing the hydrocarbon solvent from the metal-containing sulfated activator-support. 3. The process of claim 1, wherein the sulfate compound comprises sulfuric acid, ammonium sulfate, or a combination thereof. 4. The process of claim 1, wherein: the transition metal compound comprises titanium, zirconium, hafnium, vanadium, molybdenum, tungsten, iron, cobalt, nickel, copper, scandium, yttrium, lanthanum, or any combination thereof; andthe solid oxide comprises silica, alumina, silica-alumina, aluminophosphate, titania, zirconia, magnesia, boria, zinc oxide, any mixed oxide thereof, or any combination thereof. 5. The process of claim 1, wherein: the transition metal compound comprises titanium, zirconium, hafnium, vanadium, or any combination thereof; andthe solid oxide comprises silica, alumina, silica-alumina, or any combination thereof. 6. The process of claim 5, wherein a weight percent of the transition metal compound to the metal-containing sulfated activator-support is in a range from about 0.1 to about 5 percent. 7. The process of claim 1, wherein: the solid oxide is calcined prior to step (a);the sulfated solid oxide in step (b) is calcined at a temperature in a range from about 350° C. to about 600° C. for about 0.3 to about 20 hours; anda weight percent of the transition metal compound to the metal-containing sulfated activator-support is in a range from about 0.01 to about 10 percent. 8. The process of claim 1, wherein: the transition metal compound comprises TiCl4; andthe ratio of the sulfate compound to the solid oxide is in a range from about 1.5 mmol/g to about 10 mmol/g. 9. A process to produce a metal-containing sulfated activator-support, the process comprising: (a) contacting a solid oxide with a sulfate compound while calcining to produce a calcined sulfated solid oxide; and(b) contacting the calcined sulfated solid oxide with a transition metal compound and a hydrocarbon solvent;to produce the metal-containing sulfated activator-support; wherein the metal-containing sulfated activator-support is not calcined. 10. The process of claim 9, further comprising removing the hydrocarbon solvent from the metal-containing sulfated activator-support. 11. The process of claim 9, wherein the sulfate compound comprises sulfuric acid, ammonium sulfate, or a combination thereof. 12. The process of claim 9, wherein: the transition metal compound comprises titanium, zirconium, hafnium, vanadium, molybdenum, tungsten, iron, cobalt, nickel, copper, scandium, yttrium, lanthanum, or any combination thereof; andthe solid oxide comprises silica, alumina, silica-alumina, aluminophosphate, titania, zirconia, magnesia, boria, zinc oxide, any mixed oxide thereof, or any combination thereof. 13. The process of claim 9, wherein: the transition metal compound comprises titanium, zirconium, hafnium, vanadium, or any combination thereof; andthe solid oxide comprises silica, alumina, silica-alumina, or any combination thereof. 14. The process of claim 13, wherein a weight percent of the transition metal compound to the metal-containing sulfated activator-support is in a range from about 0.1 to about 5 percent. 15. The process of claim 9, wherein: the solid oxide is calcined prior to step (a);the calcining in step (a) is performed at a temperature in a range from about 350° C. to about 600° C. for about 0.3 to about 20 hours; anda weight percent of the transition metal compound to the metal-containing sulfated activator-support is in a range from about 0.01 to about 10 percent. 16. The process of claim 9, wherein: the transition metal compound comprises TiCl4; andthe ratio of the sulfate compound to the solid oxide is in a range from about 1.5 mmol/g to about 10 mmol/g. 17. The process of claim 9, wherein: a weight percent of the transition metal compound to the metal-containing sulfated activator-support is in a range from about 0.01 to about 10 percent; andthe transition metal compound comprises titanium, zirconium, hafnium, vanadium, molybdenum, tungsten, iron, cobalt, nickel, copper, scandium, yttrium, lanthanum, or any combination thereof. 18. The process of claim 9, wherein: the ratio of the sulfate compound to the solid oxide is in a range from about 1.5 mmol/g to about 10 mmol/g;the transition metal compound comprises titanium, zirconium, hafnium, vanadium, or any combination thereof; andthe solid oxide comprises silica, alumina, silica-alumina, or any combination thereof. 19. The process of claim 1, wherein: a weight percent of the transition metal compound to the metal-containing sulfated activator-support is in a range from about 0.01 to about 10 percent; andthe transition metal compound comprises titanium, zirconium, hafnium, vanadium, molybdenum, tungsten, iron, cobalt, nickel, copper, scandium, yttrium, lanthanum, or any combination thereof. 20. The process of claim 1, wherein: the ratio of the sulfate compound to the solid oxide is in a range from about 1.5 mmol/g to about 10 mmol/g;the transition metal compound comprises titanium, zirconium, hafnium, vanadium, or any combination thereof; andthe solid oxide comprises silica, alumina, silica-alumina, or any combination thereof.
Hottovy John D. (Bartlesville OK) Lawrence Frederick C. (Bartlesville OK) Lowe Barry W. (Bartlesville OK) Fangmeier James S. (Bartlesville OK), Apparatus and method for producing ethylene polymer.
McDaniel Max P. ; Benham Elizabeth A. ; Martin Shirley J. ; Collins Kathy S. ; Smith James L. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
Hottovy John D. ; Hensley Harvey D. ; Przelomski David J. ; Cymbaluk Teddy H. ; Franklin ; III Robert K. ; Perez Ethelwoldo P., High solids slurry polymerization.
Reed Marion G. (Hacienda Heights CA) Jaffe Joseph (Berkeley CA), Hydrocarbon hydroconversion process employing hydroxy-aluminum stabilized catalysts supports.
Jenkins ; III John M. (So. Charleston WV) Jones Russell L. (Chapel Hill NC) Jones Thomas M. (So. Charleston WV) Beret Samil (Danville CA), Method for fluidized bed polymerization.
McDaniel,Max P.; Collins,Kathy S.; Benham,Elizabeth A.; DesLauriers,Paul J., Methods of preparing active chromium/alumina catalysts via treatment with sulfate.
McDaniel, Max P.; Johnson, Marvin M.; Randolph, Bruce B.; Collins, Kathy S.; Benham, Elizabeth A.; Jensen, Michael D.; Hawley, Gil R.; Martin, Joel L., Organometal catalyst composition.
McDaniel, Max P.; Johnson, Marvin M.; Randolph, Bruce B.; Collins, Kathy S.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst composition.
Collins, Kathy S.; Palackal, Syriac J.; McDaniel, Max P.; Jensen, Michael D.; Hawley, Gil R.; Farmer, Kenneth R.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L., Organometal catalyst compositions.
Max P. McDaniel ; James B. Kimble ; Kathy S. Collins ; Elizabeth A. Benham ; Michael D. Jensen ; Gil R. Hawley ; Joel L. Martin, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; James L. Smith ; Elizabeth A. Benham ; Marvin M. Johnson ; Anthony P. Eaton ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R.; Hsieh, Eric T., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Eaton, Anthony P.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Shveima, Joseph S.; Smith, James L.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions with solid oxide supports treated with fluorine and boron.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Joel L. Martin ; Michael D. Jensen ; Gil R. Hawley, Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Wittner, Christopher E., Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Rohlfing, David C.; Yu, Youlu, Organometal compound catalyst.
Hawley, Gil R.; McDaniel, Max P.; Wittner, Christopher E.; Jensen, Michael D.; Martin, Joel L.; Benham, Elizabeth A.; Eaton, Anthony P.; Collins, Kathy S., Polymerization catalysts.
Martin,Joel L.; Thorn,Matthew G.; McDaniel,Max P.; Jensen,Michael D.; Yang,Qing; DesLauriers,Paul J.; Kertok,Mark E., Polymerization catalysts and process for producing bimodal polymers in a single reactor.
Hanson Donald O. (Bartlesville OK), Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator.
Hasegawa Saiki (Mie-ken JPX) Yasuda Hisami (Mie-ken JPX) Yano Akihiro (Mie-ken JPX), Process for producing a
상세보기
Max P. McDaniel ; Anthony P. Eaton ; Elizabeth A. Benham ; Shawn R. Kennedy ; Ashish M. Sukhadia ; Rajendra K. Krishnaswamy ; Kathy S. Collins, Process for producing a polymer composition.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Process for producing polymers using a composition comprising an organometal compound, a treated solid oxide compound, and an organoaluminum compound.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.