[미국특허]
Systems and methods for real-time catalyst particle size control in a polymerization reactor
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
C08F-002/00
C08F-002/12
C08F-002/34
B01J-019/18
B02C-004/00
B02C-015/00
B02C-019/06
B02C-023/08
출원번호
US-0400154
(2012-02-20)
등록번호
US-8703883
(2014-04-22)
발명자
/ 주소
McDaniel, Max P.
Mutchler, Joel A.
출원인 / 주소
Chevron Phillips Chemical Company LP
대리인 / 주소
Merchant & Gould P.C.
인용정보
피인용 횟수 :
2인용 특허 :
108
초록
Polymerization reactor systems providing real-time control of the average particle size of catalyst system components are disclosed. Methods for operating such polymerization reactor systems also are described.
대표청구항▼
1. A method of operating a polymerization reactor system, the method comprising: (i) reducing an average particle size of a first catalyst system component to produce a reduced catalyst system component having a reduced average particle size, wherein the first catalyst system component comprises chr
1. A method of operating a polymerization reactor system, the method comprising: (i) reducing an average particle size of a first catalyst system component to produce a reduced catalyst system component having a reduced average particle size, wherein the first catalyst system component comprises chromium impregnated onto silica, chromium impregnated onto silica-titania, chromium cogelled with silica, chromium cogelled with silica-titania, or any combination thereof;(ii) introducing a transition metal-based catalyst system comprising the reduced catalyst system component and an olefin monomer into a polymerization reactor within the polymerization reactor system;(iii) contacting the transition metal-based catalyst system comprising the reduced catalyst system component with the olefin monomer under polymerization conditions to produce an olefin polymer;(iv) monitoring a process variable in the polymerization reactor system and/or a property of the olefin polymer, and(v) when the process variable and/or the property has/have reached a predetermined level, adjusting the reduced average particle size. 2. The method of claim 1, wherein the process variable in the polymerization reactor system and/or the property of the olefin polymer comprise(s): an average particle size of the olefin polymer;a maximum particle size of the olefin polymer;a particle size distribution of the olefin polymer;a bulk density of the olefin polymer;a production rate of the olefin polymer;a catalyst activity of the transition metal-based catalyst system;a heat transfer coefficient of the polymerization reactor; orany combination thereof. 3. The method of claim 1, wherein the reducing step comprises impact, shear, compression, vibration, grinding, crushing, or any combination thereof. 4. The method of claim 1, wherein the olefin monomer comprises a C2-C24 olefin. 5. The method of claim 4, further comprising introducing an olefin comonomer into the polymerization reactor and contacting the olefin comonomer with the catalyst system and the olefin monomer. 6. A polymerization reactor system comprising: (a) a comminution device configured to reduce a first catalyst system component, having a first average particle size, to produce a reduced catalyst system component having a reduced average particle size;(b) a polymerization reactor configured to contact a transition metal-based catalyst system comprising the reduced catalyst system component with an olefin monomer under polymerization conditions to produce an olefin polymer; and(c) a controller operative to control the reduced average particle size according to a process variable in the polymerization reactor system and/or according to a property of the olefin polymers;wherein the polymerization reactor system comprises a loop slurry reactor. 7. The system of claim 6, wherein the comminution device comprises an impact crusher, a hammer mill, a jet mill, a roll mill, a roll crusher, a jaw crusher, an ultrasonic device, or any combination thereof. 8. The system of claim 6, wherein an output of the comminution device feeds directly into the polymerization reactor. 9. The system of claim 6, wherein the process variable in the polymerization reactor system and/or the property of the olefin polymer comprise(s): a percent solids in the loop slurry reactor;a slurry density in the loop slurry reactor;a circulation velocity in the loop slurry reactor;a pump pressure drop in the loop slurry reactor;a pump power consumption in the loop slurry reactor; orany combination thereof. 10. The system of claim 6, wherein the transition metal-based catalyst system comprises chromium, vanadium, titanium, zirconium, hafnium, or a combination thereof; and wherein the process variable in the polymerization reactor system and/or the property of the olefin polymer comprise(s): an average particle size of the olefin polymer;a maximum particle size of the olefin polymer;a particle size distribution of the olefin polymer;a bulk density of the olefin polymer;a production rate of the olefin polymer;a catalyst activity of the transition metal-based catalyst system;a heat transfer coefficient of the loop slurry reactor; orany combination thereof. 11. The system of claim 6, wherein the controller comprises a processing unit. 12. The system of claim 6, further comprising a particle size analyzer configured to determine the reduced average particle size. 13. The system of claim 6, wherein: the first average particle size is at least about 100 microns;the reduced average particle size is less than about 75 microns;a ratio of the first average particle size to the reduced average particle size is in a range from about 1.5:1 to about 5:1; orany combination thereof. 14. The system of claim 6, wherein the first catalyst system component comprises a solid oxide, an activator-support, or any combination thereof; and wherein: the first average particle size is in a range from about 200 to about 1000 microns;the reduced average particle size is in a range from about 1 to about 50 microns;a ratio of the first average particle size to the reduced average particle size is in a range from about 1.5:1 to about 15:1; orany combination thereof. 15. The method of claim 1, wherein the olefin monomer comprises a C2-C3 olefin. 16. The method of claim 15, wherein the polymerization reactor system comprises a slurry reactor, a gas-phase reactor, a solution reactor, or a combination thereof. 17. The method of claim 1, wherein: the average particle size of the first catalyst system component is in a range from about 200 to about 1000 microns;the reduced average particle size of the reduced catalyst system component is in a range from about 5 to about 75 microns;a ratio of the average particle size of the first catalyst system component to the reduced average particle size of the reduced catalyst system component is in a range from about 1.5:1 to about 25:1; orany combination thereof. 18. The method of claim 5, wherein the olefin monomer comprises ethylene and the olefin comonomer comprises 1-butene, 1-hexene, 1-octene, or a combination thereof. 19. The method of claim 18, wherein the process variable in the polymerization reactor system and/or the property of the olefin polymer comprise(s): an average particle size of the olefin polymer;a maximum particle size of the olefin polymer;a particle size distribution of the olefin polymer;a bulk density of the olefin polymer;a production rate of the olefin polymer;a catalyst activity of the transition metal-based catalyst system;a heat transfer coefficient of the polymerization reactor; orany combination thereof. 20. The method of claim 19, wherein: the average particle size of the first catalyst system component is in a range from about 100 to about 1000 microns;the reduced average particle size of the reduced catalyst system component is in a range from about 1 to about 75 microns;a ratio of the average particle size of the first catalyst system component to the reduced average particle size of the reduced catalyst system component is in a range from about 1.5:1 to about 100:1; orany combination thereof. 21. The system of claim 8, wherein the controller controls and/or adjusts an output rate of the comminution device. 22. The system of claim 8, wherein the olefin polymer comprises an ethylene homopolymer, an ethylene copolymer, or a combination thereof; and wherein: the first average particle size is in a range from about 200 to about 1000 microns;the reduced average particle size is in a range from about 5 to about 70 microns;a ratio of the first average particle size to the reduced average particle size is in a range from about 1.5:1 to about 25:1; orany combination thereof. 23. A polymerization reactor system comprising: (a) a comminution device configured to reduce a first catalyst system component, having a first average particle size, to produce a reduced catalyst system component having a reduced average particle size;(b) a polymerization reactor configured to contact a transition metal-based catalyst system comprising the reduced catalyst system component with an olefin monomer under polymerization conditions to produce an olefin polymer; and(c) a controller operative to control the reduced average particle size according to a process variable in the polymerization reactor system and/or according to a property of the olefin polymer;wherein the polymerization reactor system comprises a fluidized bed reactor, and wherein the process variable in the polymerization reactor system and/or the property of the olefin polymer comprise(s):a fluidizing gas velocity in the fluidized bed reactor;a bed density in the fluidized bed reactor;a bed height in the fluidized bed reactor;a gas/powder ratio in the fluidized bed reactor;a static build-up in the fluidized bed reactor; orany combination thereof. 24. The system of claim 23, wherein the comminution device comprises an impact crusher, a hammer mill, a jet mill, a roll mill, a roll crusher, a jaw crusher, an ultrasonic device, or any combination thereof. 25. The system of claim 23, wherein the olefin polymer comprises an ethylene homopolymer, an ethylene copolymer, or a combination thereof; and wherein: the first average particle size is in a range from about 200 to about 1000 microns;the reduced average particle size is in a range from about 1 to about 50 microns;a ratio of the first average particle size to the reduced average particle size is in a range from about 1.5:1 to about 15:1; orany combination thereof. 26. The system of claim 23, further comprising a particle size analyzer configured to determine the reduced average particle size. 27. The system of claim 23, wherein the process variable in the polymerization reactor system and/or the property of the olefin polymer further comprise(s): an average particle size of the olefin polymer;a maximum particle size of the olefin polymer;a particle size distribution of the olefin polymer;a bulk density of the olefin polymer;a production rate of the olefin polymer;a catalyst activity of the transition metal-based catalyst system;a heat transfer coefficient of the fluidized bed reactor; orany combination thereof. 28. The system of claim 23, wherein an output of the comminution device feeds directly into the polymerization reactor. 29. The system of claim 28, wherein the controller controls and/or adjusts an output rate of the comminution device. 30. The system of claim 28, wherein: the transition metal-based catalyst system comprises chromium, vanadium, titanium, zirconium, hafnium, or a combination thereof; andthe first catalyst system component comprises a solid oxide, an activator-support, or any combination thereof; and wherein:the first average particle size is in a range from about 200 to about 1000 microns;the reduced average particle size is in a range from about 5 to about 70 microns;a ratio of the first average particle size to the reduced average particle size is in a range from about 1.5:1 to about 25:1; orany combination thereof.
McDaniel Max P. (Bartlesville OK) Johnson Marvin M. (Bartlesville OK), Acid gelling aluminum phosphate from concentrated mass and catalyst containing same.
Hottovy John D. (Bartlesville OK) Lawrence Frederick C. (Bartlesville OK) Lowe Barry W. (Bartlesville OK) Fangmeier James S. (Bartlesville OK), Apparatus and method for producing ethylene polymer.
McDaniel Max P. ; Benham Elizabeth A. ; Martin Shirley J. ; Collins Kathy S. ; Smith James L. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
Frey Krisztina (Bayreuth DEX) von Massow Gabriele (Bayreuth DEX) Alt Helmut G. (Bayreuth DEX) Welch M. Bruce (Bartlesville OK), Cyclopentadienyl-type ligands, metallocenes, catalyst systems, preparation, and use.
McDaniel Max P. (Bartlesville OK) Badley Rickey D. (Olathe KS) Kreischer Bruce E. (Houston TX) Shveima Joseph S. (Bartlesville OK), Ethylene copolymerization process.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas D. (Westchester OH) Johnson Marvin M. (Bartlesville OK), Fluorided aluminas, catalysts, and polymerization processes.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas D. (Westchester OH) Johnson Marvin M. (Bartlesville OK), Fluorided aluminas, catalysts, and polymerization processes.
Hottovy John D. ; Hensley Harvey D. ; Przelomski David J. ; Cymbaluk Teddy H. ; Franklin ; III Robert K. ; Perez Ethelwoldo P., High solids slurry polymerization.
Reed Marion G. (Hacienda Heights CA) Jaffe Joseph (Berkeley CA), Hydrocarbon hydroconversion process employing hydroxy-aluminum stabilized catalysts supports.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas (Bartlesville OK) Norwood Donald D. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK) Boggs Elizabeth A. (Bartlesville OK), In situ comonomer generation in olefin polymerization.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas (Bartlesville OK) Norwood Donald D. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK) Boggs Elizabeth A. (Bartlesville OK), In situ comonomer generation in olefin polymerization.
Geerts Rolf L. (Bartlesville OK) Palackal Syriac J. (Bartlesville OK) Pettijohn Ted M. (Bartlesville OK) Infield Robert M. (Barnsdall OK), Metallocene catalyst systems, preparation, and use.
Welch M. Bruce (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Peifer Bernd (Bayreuth DEX), Metallocene compounds and preparation thereof containing terminal alkynes.
Alt Helmut G. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth OK DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Peifer Bernd (Bayreuth OK DEX) Palackal Syriac J. (Bartlesville , Metallocenes and processes therefor and therewith.
Jenkins ; III John M. (So. Charleston WV) Jones Russell L. (Chapel Hill NC) Jones Thomas M. (So. Charleston WV) Beret Samil (Danville CA), Method for fluidized bed polymerization.
Welch M. Bruce (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Peifer Bernd (Bayreuth OK DEX) Palackal Syriac J. (Bartlesville OK) Glass Gary L. (Dewey OK) Pettijohn Ted M. (Bartlesville OK) Hawley Gi, Method for making and using a supported metallocene catalyst system.
Zenk Roland (Bayreuth DEX) Alt Helmut G. (Bayreuth OK DEX) Welch M. Bruce (Bartlesville OK) Palackal Syriac J. (Bartlesville OK), Method for preparing cyclopentadienyl-type ligands and metallocene compounds.
Evertz, Kaspar; Funk, Guido; de Lange, Paulus; Kolle, Peter; Deckers, Andreas, Method for producing Phillips catalysts for polymerizing olefins with better productivity rates in the particle-form process.
Garoff Thomas (Borgstrminkuja 4 K 104 ; SF-00840 Helsinki FIX) Leinonen Timo (Hamarin koulu ; SP-006650 Hamari FIX), Method for the activation of a carrier for a polymerization catalyst, and a catalyst component obtained using the method.
Mitchell Kent E. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Welch M. Bruce (Bartlesville OK) Benham Elizabeth A. (Bartlesville OK) Cone Grover W. (Bartlesville OK) ..AP: Phillips Petroleum C, Olefin polymerization.
Stacy Elizabeth M. (Bartlesville OK) Welch M. Bruce (Bartlesville OK) Martin Shirley J. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Pierce Dale E. (Bartlesville OK), Olefin polymerization.
McDaniels Max P. (Bartlesville OK) Johnson Marvin M. (Bartlesville OK), Olefin polymerization using chromium on an aluminum phosphate produced from a concentrated mass.
Palackal Syriac J. (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth OH DEX) Hill Tara G. (Fairfield OH) Hawley Gil R. (Dewey OK) Chu Peter P. (Bartlesville OK) Welch M. , Olefin polymerization using silyl-bridged metallocenes.
de Lange, Paulus; Funk, Guido; Deckers, Andreas; Kolle, Peter, Optimized method for the production of catalyst supports based on silica gel and chromium catalysts supported on silica gel.
McDaniel, Max P.; Johnson, Marvin M.; Randolph, Bruce B.; Collins, Kathy S.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst composition.
Collins, Kathy S.; Palackal, Syriac J.; McDaniel, Max P.; Jensen, Michael D.; Hawley, Gil R.; Farmer, Kenneth R.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L., Organometal catalyst compositions.
Max P. McDaniel ; James B. Kimble ; Kathy S. Collins ; Elizabeth A. Benham ; Michael D. Jensen ; Gil R. Hawley ; Joel L. Martin, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; James L. Smith ; Elizabeth A. Benham ; Marvin M. Johnson ; Anthony P. Eaton ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R.; Hsieh, Eric T., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Eaton, Anthony P.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Shveima, Joseph S.; Smith, James L.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions with solid oxide supports treated with fluorine and boron.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Joel L. Martin ; Michael D. Jensen ; Gil R. Hawley, Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Wittner, Christopher E., Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Rohlfing, David C.; Yu, Youlu, Organometal compound catalyst.
Alt Helmut G. (Bayreuth DEX) Palackal Syriac J. (Bartlesville OK) Zenk Roland (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Schmid Michael (Bayreuth DEX), Organometallic fluorenyl compounds and use thereof in an alpha-olefin polymerization process.
Alt Helmut G. (Bayreuth DEX) Hawley Gil R. (Dewey OK) Smith Paul D. (Seabrook TX) Palackal Syriac J. (Bartlesville OK) Schmid Michael (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Patsidis Konstant, Organometallic fluorenyl compounds and use thereof in olefin polymerization.
Alt Helmut G. (Bayreuth DEX) Palackal Syriac J. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth OK DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK, Organometallic fluorenyl compounds, preparation, and use.
Hawley, Gil R.; McDaniel, Max P.; Wittner, Christopher E.; Jensen, Michael D.; Martin, Joel L.; Benham, Elizabeth A.; Eaton, Anthony P.; Collins, Kathy S., Polymerization catalysts.
Martin,Joel L.; Thorn,Matthew G.; McDaniel,Max P.; Jensen,Michael D.; Yang,Qing; DesLauriers,Paul J.; Kertok,Mark E., Polymerization catalysts and process for producing bimodal polymers in a single reactor.
McDaniel Max P. (Bartlesville OK) Johnson Marvin M. (Bartlesville OK), Polymerization process using catalysts with acid gelled aluminum phosphate base.
McDaniel, Max P.; Collins, Kathy S.; Smith, James L.; Benham, Elizabeth A.; Johnson, Marvin M.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Polymerization process utilizing organometal catalyst compositions and the polymer produced thereby.
McDaniel Max P. (Bartlesville OK) Smith Paul D. (Seabrook TX) Norwood Donald D. (Bartlesville OK), Polymerization with surface silicated and fluorided alumina supported chromium.
Hanson Donald O. (Bartlesville OK), Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator.
Benham Elizabeth A. (Bartlesville OK) McDaniel Max P. (Bartlesville OK), Process for making bimodal polyolefins using two independent particulate catalysts.
Martin Shirley J. (Bartlesville OK) Benham Elizabeth A. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Gerhold Bruce W. (Bartlesville OK), Process for olefin polymerization.
Frey Krisztina (Bayreuth DEX) von Massow Gabriele (Bayreuth DEX) Alt Helmut G. (Bayreuth DEX) Welch M. Bruce (Bartlesville OK), Process for preparing cyclopentadienyl-type ligands.
Max P. McDaniel ; Anthony P. Eaton ; Elizabeth A. Benham ; Shawn R. Kennedy ; Ashish M. Sukhadia ; Rajendra K. Krishnaswamy ; Kathy S. Collins, Process for producing a polymer composition.
Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Palackal Syriac J. (Bartlesville OK) Pettijohn Ted M. (Marshall TX), Process for producing broad molecular weight polyolefin.
McDaniel, Max P.; Benham, Elizabeth A.; Martin, Shirley J.; Collins, Kathy S.; Smith, James L.; Hawley, Gil R.; Wittner, Christopher E.; Jensen, Michael D., Process for producing polymers.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Process for producing polymers using a composition comprising an organometal compound, a treated solid oxide compound, and an organoaluminum compound.
Alt Helmut G. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Chu Peter P. (Bartlesville OK), Process of polymerizing olefins using diphenylsilyl or dimethyl tin bridged 1-methyl fluorenyl metallocenes.
McDaniel Max P. (Bartlesville OK) Smith Paul D. (Bartlesville OK) Norwood Donald D. (Bartlesville OK), Silicon and fluorine-treated alumina containing a chromium catalyst and method of producing same.
Knudsen Ronald D. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Boggs Elizabeth A. (Bartlesville OK) Bailey F. Wallace (Bartlesville OK), Twice-aged porous inorganic oxides, catalysts, and polymerization processes.
Alt Helmut G. (Bayreuth DEX) Palackal Syriac J. (Bartlesville OK) Patsidis Konstantinos (Berlin DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK) , Unbridged metallocenes of 9-substituted fluorenyl compounds and use thereof.
Patsidis Konstantinos (Bayreuth DEX) Peifer Bernd (Bayreuth DEX) Palackal Syriac J. (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Fa, Vinly-substituted bridged metallocenes.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.