[미국특허]
Methods for controlling dual catalyst olefin polymerizations
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
C08F-002/00
C08F-004/603
C08F-004/606
C08F-004/6192
C08F-004/643
C08F-004/646
C08F-210/06
출원번호
US-0625065
(2012-09-24)
등록번호
US-8940842
(2015-01-27)
발명자
/ 주소
Yang, Qing
Crain, Tony R.
Lanier, Jerry T.
Fodor, Jeff S.
출원인 / 주소
Chevron Phillips Chemical Company LP
대리인 / 주소
Merchant & Gould
인용정보
피인용 횟수 :
0인용 특허 :
108
초록
Methods for controlling the weight ratio of a higher molecular weight component to a lower molecular weight component of an olefin polymer are disclosed. This weight ratio can be increased as polymerization reaction temperature and/or catalyst system residence time are increased.
대표청구항▼
1. A polymerization process, the process comprising: (1) contacting a dual catalyst system with an olefin monomer and an olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer,wherein the olefin polymer comprises a higher molecular weight com
1. A polymerization process, the process comprising: (1) contacting a dual catalyst system with an olefin monomer and an olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer,wherein the olefin polymer comprises a higher molecular weight component and a lower molecular weight component,wherein the dual catalyst system comprises a first metallocene catalyst component and a second metallocene catalyst component, andwherein the polymerization conditions comprise a reaction temperature and a dual catalyst system residence time; and(2) controlling a weight ratio of the higher molecular weight component to the lower molecular weight component by adjusting the reaction temperature and/or the dual catalyst system residence time, wherein the weight ratio of the higher molecular weight component to the lower molecular weight component increases as the reaction temperature increases. 2. The process of claim 1, wherein the weight ratio of the higher molecular weight component to the lower molecular weight component increases as the catalyst system residence time increases. 3. The process of claim 1, wherein the polymerization reactor system comprises a slurry reactor, a gas-phase reactor, a solution reactor, or a combination thereof. 4. The process of claim 1, wherein the polymerization reactor system comprises a single reactor. 5. The process of claim 1, wherein the olefin monomer comprises ethylene and the olefin comonomer comprises a C3-C10 alpha-olefin. 6. The process of claim 1, further comprising the steps of: determining the weight ratio of the higher molecular weight component to the lower molecular weight component; andadjusting the reaction temperature and/or the dual catalyst system residence time based on the difference between the determined weight ratio and a target weight ratio. 7. The process of claim 1, wherein the first metallocene catalyst component and the second metallocene catalyst component independently comprise titanium, zirconium, hafnium, or a combination thereof. 8. The process of claim 1, wherein the weight ratio of the first metallocene catalyst component to the second metallocene catalyst component is in a range of from about 1:10 to about 10:1. 9. The process of claim 1, wherein the weight ratio of the first metallocene catalyst component to the second metallocene catalyst component is substantially constant. 10. A method of controlling a weight ratio of a higher molecular weight component to a lower molecular weight component of an olefin polymer, the method comprising: (i) contacting a dual catalyst system with an olefin monomer and an olefin comonomer in a polymerization reactor system under polymerization conditions to produce the olefin polymer,wherein the dual catalyst system comprises a first metallocene catalyst component and a second metallocene catalyst component, andwherein the polymerization conditions comprise a reaction temperature and a dual catalyst system residence time; and(ii) adjusting the reaction temperature and/or the dual catalyst system residence time to control the weight ratio of the higher molecular weight component to the lower molecular weight component, wherein the weight ratio of the higher molecular weight component to the lower molecular weight component increases as the reaction temperature increases. 11. The method of claim 10, wherein the weight ratio of the higher molecular weight component to the lower molecular weight component is in a range from about 1:10 to about 10:1. 12. The method of claim 10, further comprising: a step of adjusting the weight ratio of the first metallocene catalyst component to the second metallocene catalyst component;a step of adding hydrogen to the polymerization reactor system to adjust a molecular weight parameter and/or the melt index (MI) of the polymer; orboth. 13. The method of claim 10, wherein the dual catalyst system comprises a first metallocene catalyst component, a second metallocene catalyst component, an activator, and an optional co-catalyst. 14. A process for producing an olefin polymer with a target weight ratio of a higher molecular weight component to a lower molecular weight component, the process comprising: (a) contacting a dual catalyst system with an olefin monomer and an olefin comonomer in a polymerization reactor system under polymerization conditions,wherein the dual catalyst system comprises a first metallocene catalyst component and a second metallocene catalyst component, andwherein the polymerization conditions comprise a reaction temperature and a dual catalyst system residence time; and(b) controlling the reaction temperature and/or the dual reactor catalyst system residence time to produce the olefin polymer with the target weight ratio of the higher molecular weight component to the lower molecular weight component. 15. The process of claim 14, wherein: the first metallocene catalyst component produces the lower molecular weight component and comprises zirconium; andthe second metallocene catalyst component produces the higher molecular weight component and comprises zirconium and/or hafnium. 16. The process of claim 14, wherein: the reaction temperature is in a range from about 80° C. to about 105° C.;the residence time is in a range from about 15 min to about 90 min;a reactor % solids is in a range from about 30 to about 55 wt. %; or any combination thereof. 17. The process of claim 14, wherein the olefin polymer comprises an ethylene copolymer, and the density of the ethylene copolymer is controlled by: adjusting a molar ratio of ethylene to the olefin comonomer; andadjusting the weight ratio of the higher molecular weight component to the lower molecular weight component. 18. A polymerization process, the process comprising: (1) contacting a dual catalyst system with an olefin monomer and an olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer,wherein the olefin polymer comprises a higher molecular weight component and a lower molecular weight component,wherein the dual catalyst system comprises a first transition metal compound, a second transition metal compound, and an activator-support,wherein the activator-support comprises fluorided alumina, chlorided alumina, bromided alumina, sulfated alumina, fluorided silica-alumina, chlorided silica-alumina, bromided silica-alumina, sulfated silica-alumina, fluorided silica-zirconia, chlorided silica-zirconia, bromided silica-zirconia, sulfated silica-zirconia, fluorided silica-titania, fluorided silica-coated alumina, sulfated silica-coated alumina, phosphated silica-coated alumina, or any combination thereof, andwherein the polymerization conditions comprise a reaction temperature and a dual catalyst system residence time; and(2) controlling a weight ratio of the higher molecular weight component to the lower molecular weight component by adjusting the reaction temperature and/or the dual catalyst system residence time, wherein the weight ratio of the higher molecular weight component to the lower molecular weight component increases as the reaction temperature increases. 19. The process of claim 18, wherein the dual catalyst system comprises a first transition metal compound, a second transition metal compound, an activator-support, and a co-catalyst. 20. The process of claim 1, wherein: the dual catalyst system comprises a first metallocene catalyst component, a second metallocene catalyst component, an activator, and an optional co-catalyst, wherein the activator comprises an activator-support, an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, or a combination thereof;the olefin monomer comprises ethylene and the olefin comonomer comprises 1-butene, 1-hexene, 1-octene, or a mixture thereof;the first metallocene catalyst component and the second metallocene catalyst component independently comprise titanium, zirconium, hafnium, or a combination thereof; andthe polymerization reactor system comprises a slurry reactor, a gas-phase reactor, a solution reactor, or a combination thereof. 21. The process of claim 20, wherein: the activator comprises an aluminoxane compound;the first metallocene catalyst component comprises an unbridged zirconium based metallocene compound; andthe second metallocene catalyst component comprises a zirconium or hafnium based bridged metallocene compound. 22. The process of claim 20, wherein the dual catalyst system comprises: a first metallocene catalyst component comprising an unbridged zirconium based metallocene compound;a second metallocene catalyst component comprising a zirconium or hafnium based bridged metallocene compound;an activator-support comprising a solid oxide treated with an electron-withdrawing anion; andan organoaluminum compound. 23. The process of claim 20, wherein the weight ratio of the higher molecular weight component to the lower molecular weight component increases as the catalyst system residence time increases. 24. The method of claim 11, wherein: the dual catalyst system comprises a first metallocene catalyst component, a second metallocene catalyst component, an activator, and a co-catalyst;the olefin monomer comprises ethylene and the olefin comonomer comprises a C3-C10 alpha-olefin; andthe first metallocene catalyst component and the second metallocene catalyst component independently comprise titanium, zirconium, hafnium, or a combination thereof. 25. The method of claim 24, wherein: the activator comprises an aluminoxane compound, an activator-support comprising a solid oxide treated with an electron-withdrawing anion, or a combination thereof. 26. The method of claim 25, wherein: the first metallocene catalyst component comprises an unbridged zirconium based metallocene compound;the second metallocene catalyst component comprises a zirconium or hafnium based bridged metallocene compound; andthe weight ratio of the higher molecular weight component to the lower molecular weight component increases as the catalyst system residence time increases. 27. The process of claim 14, wherein: the dual catalyst system comprises a first metallocene catalyst component, a second metallocene catalyst component, an activator, and an optional co-catalyst, wherein the activator comprises an activator-support, an aluminoxane compound, an organoboron or organoborate compound, an ionizing ionic compound, or a combination thereof;the olefin monomer comprises ethylene and the olefin comonomer comprises 1-butene, 1-hexene, 1-octene, or a mixture thereof;the first metallocene catalyst component and the second metallocene catalyst component independently comprise titanium, zirconium, hafnium, or a combination thereof;the weight ratio of the higher molecular weight component to the lower molecular weight component increases as the reaction temperature increases; andthe weight ratio of the higher molecular weight component to the lower molecular weight component increases as the catalyst system residence time increases. 28. The process of claim 27, wherein: the target weight ratio of the higher molecular weight component to the lower molecular weight component is in a range from about 1:10 to about 10:1; andthe dual catalyst system comprises a first metallocene catalyst component comprising an unbridged zirconium based metallocene compound; a second metallocene catalyst component comprising a zirconium or hafnium based bridged metallocene compound; an activator-support comprising a fluorided solid oxide, a sulfated solid oxide, or a combination thereof; and an organoaluminum compound. 29. The process of claim 19, wherein: the olefin monomer comprises ethylene and the olefin comonomer comprises 1-butene, 1-hexene, 1-octene, or a mixture thereof;the dual catalyst system comprises an organoaluminum co-catalyst;the polymerization reactor system comprises a slurry reactor, a gas-phase reactor, a solution reactor, or a combination thereof; andthe weight ratio of the higher molecular weight component to the lower molecular weight component increases as the catalyst system residence time increases.
McDaniel Max P. (Bartlesville OK) Johnson Marvin M. (Bartlesville OK), Acid gelling aluminum phosphate from concentrated mass and catalyst containing same.
Hottovy John D. (Bartlesville OK) Lawrence Frederick C. (Bartlesville OK) Lowe Barry W. (Bartlesville OK) Fangmeier James S. (Bartlesville OK), Apparatus and method for producing ethylene polymer.
McDaniel Max P. ; Benham Elizabeth A. ; Martin Shirley J. ; Collins Kathy S. ; Smith James L. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel, Max P.; Benham, Elizabeth A.; Martin, Shirley J.; Collins, Kathy S.; Smith, James L.; Hawley, Gil R.; Wittner, Christopher E.; Jensen, Michael D., Compositions that can produce polymers.
Frey Krisztina (Bayreuth DEX) von Massow Gabriele (Bayreuth DEX) Alt Helmut G. (Bayreuth DEX) Welch M. Bruce (Bartlesville OK), Cyclopentadienyl-type ligands, metallocenes, catalyst systems, preparation, and use.
Yang, Qing; Jayaratne, Kumudini C.; Jensen, Michael D.; McDaniel, Max P.; Martin, Joel L.; Thorn, Matthew G.; Lanier, Jerry T.; Crain, Tony R., Dual metallocene catalysts for polymerization of bimodal polymers.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas D. (Westchester OH) Johnson Marvin M. (Bartlesville OK), Fluorided aluminas, catalysts, and polymerization processes.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas D. (Westchester OH) Johnson Marvin M. (Bartlesville OK), Fluorided aluminas, catalysts, and polymerization processes.
Hottovy John D. ; Hensley Harvey D. ; Przelomski David J. ; Cymbaluk Teddy H. ; Franklin ; III Robert K. ; Perez Ethelwoldo P., High solids slurry polymerization.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas (Bartlesville OK) Norwood Donald D. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK) Boggs Elizabeth A. (Bartlesville OK), In situ comonomer generation in olefin polymerization.
McDaniel Max P. (Bartlesville OK) Klendworth Douglas (Bartlesville OK) Norwood Donald D. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK) Boggs Elizabeth A. (Bartlesville OK), In situ comonomer generation in olefin polymerization.
Geerts Rolf L. (Bartlesville OK) Palackal Syriac J. (Bartlesville OK) Pettijohn Ted M. (Bartlesville OK) Infield Robert M. (Barnsdall OK), Metallocene catalyst systems, preparation, and use.
Welch M. Bruce (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Peifer Bernd (Bayreuth DEX), Metallocene compounds and preparation thereof containing terminal alkynes.
Alt Helmut G. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth OK DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Peifer Bernd (Bayreuth OK DEX) Palackal Syriac J. (Bartlesville , Metallocenes and processes therefor and therewith.
Jenkins ; III John M. (So. Charleston WV) Jones Russell L. (Chapel Hill NC) Jones Thomas M. (So. Charleston WV) Beret Samil (Danville CA), Method for fluidized bed polymerization.
Welch M. Bruce (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Peifer Bernd (Bayreuth OK DEX) Palackal Syriac J. (Bartlesville OK) Glass Gary L. (Dewey OK) Pettijohn Ted M. (Bartlesville OK) Hawley Gi, Method for making and using a supported metallocene catalyst system.
Zenk Roland (Bayreuth DEX) Alt Helmut G. (Bayreuth OK DEX) Welch M. Bruce (Bartlesville OK) Palackal Syriac J. (Bartlesville OK), Method for preparing cyclopentadienyl-type ligands and metallocene compounds.
Mihan, Shahram; Karer, Rainer; Schmitz, Harald; Lilge, Dieter, Method of controlling the relative activity of the different active centers of hybrid catalysts.
Shamshoum Edwar S. ; Rauscher David J., Method of olefin polymerization utilizing hydrogen pulsing, products made therefrom, and method of hydrogenation.
Jiang, Peijun; Dekmezian, Armenag Hagop; Canich, Jo Ann Marie; Sims, Charles Lewis; Abhari, Ramin; Garcia-Franco, Cesar Alberto; Johnsrud, David Raymond, Multiple catalyst system for olefin polymerization and polymers produced therefrom.
Murray, Rex E.; Jayaratne, Kumudini C.; Yang, Qing; Martin, Joel L.; Glass, Gary L., Nano-linked heteronuclear metallocene catalyst compositions and their polymer products.
Mitchell Kent E. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Welch M. Bruce (Bartlesville OK) Benham Elizabeth A. (Bartlesville OK) Cone Grover W. (Bartlesville OK) ..AP: Phillips Petroleum C, Olefin polymerization.
Stacy Elizabeth M. (Bartlesville OK) Welch M. Bruce (Bartlesville OK) Martin Shirley J. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Pierce Dale E. (Bartlesville OK), Olefin polymerization.
McDaniels Max P. (Bartlesville OK) Johnson Marvin M. (Bartlesville OK), Olefin polymerization using chromium on an aluminum phosphate produced from a concentrated mass.
Palackal Syriac J. (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth OH DEX) Hill Tara G. (Fairfield OH) Hawley Gil R. (Dewey OK) Chu Peter P. (Bartlesville OK) Welch M. , Olefin polymerization using silyl-bridged metallocenes.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; James L. Smith ; Elizabeth A. Benham ; Marvin M. Johnson ; Anthony P. Eaton ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions with solid oxide supports treated with fluorine and boron.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Wittner, Christopher E., Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Rohlfing, David C.; Yu, Youlu, Organometal compound catalyst.
Alt Helmut G. (Bayreuth DEX) Palackal Syriac J. (Bartlesville OK) Zenk Roland (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Schmid Michael (Bayreuth DEX), Organometallic fluorenyl compounds and use thereof in an alpha-olefin polymerization process.
Alt Helmut G. (Bayreuth DEX) Hawley Gil R. (Dewey OK) Smith Paul D. (Seabrook TX) Palackal Syriac J. (Bartlesville OK) Schmid Michael (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Patsidis Konstant, Organometallic fluorenyl compounds and use thereof in olefin polymerization.
Alt Helmut G. (Bayreuth DEX) Palackal Syriac J. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth OK DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK, Organometallic fluorenyl compounds, preparation, and use.
Martin,Joel L.; Thorn,Matthew G.; McDaniel,Max P.; Jensen,Michael D.; Yang,Qing; DesLauriers,Paul J.; Kertok,Mark E., Polymerization catalysts and process for producing bimodal polymers in a single reactor.
McDaniel Max P. (Bartlesville OK) Johnson Marvin M. (Bartlesville OK), Polymerization process using catalysts with acid gelled aluminum phosphate base.
McDaniel, Max P.; Collins, Kathy S.; Smith, James L.; Benham, Elizabeth A.; Johnson, Marvin M.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Polymerization process utilizing organometal catalyst compositions and the polymer produced thereby.
McDaniel Max P. (Bartlesville OK) Smith Paul D. (Seabrook TX) Norwood Donald D. (Bartlesville OK), Polymerization with surface silicated and fluorided alumina supported chromium.
Hanson Donald O. (Bartlesville OK), Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator.
Ewen John A. (Houston TX) Welborn ; Jr. Howard C. (Houston TX), Process and catalyst for producing polyethylene having a broad molecular weight distribution.
Benham Elizabeth A. (Bartlesville OK) McDaniel Max P. (Bartlesville OK), Process for making bimodal polyolefins using two independent particulate catalysts.
Martin Shirley J. (Bartlesville OK) Benham Elizabeth A. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Gerhold Bruce W. (Bartlesville OK), Process for olefin polymerization.
Frey Krisztina (Bayreuth DEX) von Massow Gabriele (Bayreuth DEX) Alt Helmut G. (Bayreuth DEX) Welch M. Bruce (Bartlesville OK), Process for preparing cyclopentadienyl-type ligands.
Hasegawa Saiki (Mie-ken JPX) Yasuda Hisami (Mie-ken JPX) Yano Akihiro (Mie-ken JPX), Process for producing a
상세보기
Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Palackal Syriac J. (Bartlesville OK) Pettijohn Ted M. (Marshall TX), Process for producing broad molecular weight polyolefin.
Yang, Qing; McDaniel, Max P.; Martin, Joel L.; Crain, Tony R.; Muninger, Randy S.; Lanier, Jerry T.; Fodor, Jeff S.; Deslauriers, Paul J.; Tso, Chung C.; Rohlfing, David C., Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches.
McDaniel, Max P.; Benham, Elizabeth A.; Martin, Shirley J.; Collins, Kathy S.; Smith, James L.; Hawley, Gil R.; Wittner, Christopher E.; Jensen, Michael D., Process for producing polymers.
Braganca, Antonio Luiz Duarte; Demoro, Esdras Piraguacy; De Oliveira, Artur Toledo Martins, Process for the controlled production of polyethylene and its copolymers.
Alt Helmut G. (Bayreuth DEX) Patsidis Konstantinos (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Chu Peter P. (Bartlesville OK), Process of polymerizing olefins using diphenylsilyl or dimethyl tin bridged 1-methyl fluorenyl metallocenes.
McDaniel Max P. (Bartlesville OK) Smith Paul D. (Bartlesville OK) Norwood Donald D. (Bartlesville OK), Silicon and fluorine-treated alumina containing a chromium catalyst and method of producing same.
Knudsen Ronald D. (Bartlesville OK) McDaniel Max P. (Bartlesville OK) Boggs Elizabeth A. (Bartlesville OK) Bailey F. Wallace (Bartlesville OK), Twice-aged porous inorganic oxides, catalysts, and polymerization processes.
Alt Helmut G. (Bayreuth DEX) Palackal Syriac J. (Bartlesville OK) Patsidis Konstantinos (Berlin DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Hsieh Eric T. (Bartlesville OK) , Unbridged metallocenes of 9-substituted fluorenyl compounds and use thereof.
Patsidis Konstantinos (Bayreuth DEX) Peifer Bernd (Bayreuth DEX) Palackal Syriac J. (Bartlesville OK) Alt Helmut G. (Bayreuth DEX) Welch M. Bruce (Bartlesville OK) Geerts Rolf L. (Bartlesville OK) Fa, Vinly-substituted bridged metallocenes.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.