대표
청구항
▼
1. A magnetic fluid conditioner for treating fluid with a magnetic field, the magnetic fluid conditioner comprising: a tank having a longitudinal axis and having an inlet disposed at a first end of the tank, the inlet operable to receive fluid, and an outlet disposed at a second end of the tank opposite the first end, the outlet operable to discharge the fluid; anda plurality of permanent magnet members arranged in the tank in a matrix formation to define three or more flow paths parallel to the longitudinal axis, wherein the three or more flow paths are...
1. A magnetic fluid conditioner for treating fluid with a magnetic field, the magnetic fluid conditioner comprising: a tank having a longitudinal axis and having an inlet disposed at a first end of the tank, the inlet operable to receive fluid, and an outlet disposed at a second end of the tank opposite the first end, the outlet operable to discharge the fluid; anda plurality of permanent magnet members arranged in the tank in a matrix formation to define three or more flow paths parallel to the longitudinal axis, wherein the three or more flow paths are in fluid communication with each other,wherein each of the permanent magnet members comprises a rectangular tube retaining a plurality of permanent magnets aligned such that each end of each permanent magnet member includes a north pole of one of said plurality of permanent magnets and a south pole of one of said plurality of permanent magnets;wherein one or more of the plurality of permanent magnet members includes a height extending along a first axis and a length extending along a second axis, wherein the length is greater than the height,wherein the one or more of the plurality of permanent magnet members are aligned in the matrix formation such that the lengths of said one or more permanent magnet members are not parallel to the tank longitudinal axis and the flow of fluid between said inlet and outlet,wherein the plurality of permanent magnets comprising one or more of the permanent magnet members are aligned such that at least one side of the one or more permanent magnet members has alternating polarities of the permanent magnets along its respective length of the permanent magnet member,wherein adjacent permanent magnet members in the matrix formation have opposite, alternating polarities of the permanent magnets along lengths of adjacent sides of the adjacent permanent magnet members,wherein a first plurality of the permanent magnet members are aligned and spaced apart one another in a singularly alternating magnetic attraction orientation in the interior of the tank to form a first row in the matrix of permanent magnet members, the first row having a spacing between each of the permanent magnet members forming the first row in the matrix, wherein a magnetic attraction is established in the spacing between each of the permanent magnet members forming the first row in the matrix, and wherein both north poles and south poles are disposed at opposite sides of each of the spaced apart permanent magnet members comprising the first row of permanent magnet members in the matrix formation,wherein a second plurality of the permanent magnet members are aligned and spaced apart one another in a singularly alternating magnetic attraction orientation in the interior of the tank to form a second row in the matrix of permanent magnet members, the second row having a spacing between each of the permanent magnet members forming the second row in the matrix, wherein a magnetic attraction is established in the spacing between each of the permanent magnet members forming the second row in the matrix, and wherein both north poles and south poles are disposed at opposite sides of each of the spaced apart permanent magnet members comprising the second row of permanent magnet members in the matrix formation,wherein a third plurality of the permanent magnet members are aligned and spaced apart one another in a singularly alternating magnetic attraction orientation in the interior of the tank to form a third row in the matrix of permanent magnet members, the third row having a spacing between each of the permanent magnet members forming the third row in the matrix, wherein a magnetic attraction is established in the spacing between each of the permanent magnet members forming the third row in the matrix, and wherein both north poles and south poles are disposed at opposite sides of each of the spaced apart permanent magnet members comprising the third row of permanent magnet members in the matrix formation,wherein a fourth plurality of the permanent magnet members are aligned and spaced apart one another in a singularly alternating magnetic attraction orientation in the interior of the tank to form a fourth row in the matrix of permanent magnet members, the fourth row having a spacing between each of the permanent magnet members forming the fourth row in the matrix, wherein a magnetic attraction is established in the spacing between each of the permanent magnet members forming the fourth row in the matrix, and wherein both north poles and south poles are disposed at opposite sides of each of the spaced apart permanent magnet members comprising the fourth row of permanent magnet members in the matrix formation,wherein the first row in the matrix of permanent magnet members and the second row in the matrix of permanent magnet members are spaced apart from each other to form a first flow path parallel to the longitudinal axis,wherein the second row in the matrix of permanent magnet members and the third row in the matrix of permanent magnet members are spaced apart from each other to form a second flow path parallel to the longitudinal axis,wherein the third row in the matrix of permanent magnet members and the fourth row in the matrix of permanent magnet members are spaced apart from each other to form a third flow path parallel to the longitudinal axis,wherein the permanent magnet members comprising the first and second rows in the matrix formation are positioned spaced apart and opposite each other in an opposite, singularly alternating magnetic relation such that a magnetic attraction is established along the first flow path between the first row of permanent magnet members and the second row of permanent magnet members in the matrix formation,wherein the permanent magnet members comprising the second and third rows in the matrix formation are positioned spaced apart and opposite each other in an opposite, singularly alternating magnetic relation such that a magnetic attraction is established along the second flow path between the second row of permanent magnet members and the third row of permanent magnet members in the matrix formation,wherein the permanent magnet members comprising the third and fourth rows in the matrix formation are positioned spaced apart and opposite each other in an opposite, singularly alternating magnetic relation such that a magnetic attraction is established along the third flow path between the third row of permanent magnet members and the fourth row of permanent magnet members in the matrix formation,wherein the spacing between the permanent magnet members forming the first row, the spacing between the permanent magnet members forming the second row, the spacing between the permanent magnet members forming the third row, and the spacing between the permanent magnet members forming the fourth row each serve as a flow path not parallel to the longitudinal axis to provide fluid communication between the first, second, and third flow paths parallel to the longitudinal axis, andwherein the matrix formation of the plurality of permanent magnet members allows for the fluid to flow from the inlet to the outlet of the tank such that the fluid is subjected to magnetic fields created by the permanent magnet members. 2. The magnetic fluid conditioner of claim 1, wherein the fluid is subjected to the magnetic fields such that the fluid experiences at least three magnetic field transitions per foot as it flows from the inlet to the outlet of the tank. 3. The magnetic fluid conditioner of claim 1, further comprising an assembly for retaining the plurality of permanent magnet members in the matrix formation within said tank. 4. The magnetic fluid conditioner of claim 1, wherein the tank is cylindrical having a circumference. 5. The magnetic fluid conditioner of claim 1, wherein the rectangular tubes are filled with epoxy to protect the permanent magnets from moisture. 6. The magnetic fluid conditioner of claim 1, wherein the magnetic field has an intensity between 3500 and 7000 gauss. 7. The magnetic fluid conditioner of claim 1, wherein the magnetic fluid conditioner is placed downstream to a pump. 8. The magnetic fluid conditioner of claim 1 further comprising an outlet pipe coupled to the outlet to transport the fluid from the magnetic fluid conditioner. 9. The magnetic fluid conditioner of claim 1, wherein the rectangular tubes are made from metal. 10. The magnetic fluid conditioner of claim 1, wherein the lengths of one or more of said plurality of permanent magnet members are aligned perpendicular to the tank longitudinal axis. 11. A magnetic water conditioner for treating water with a magnetic field, the water conditioner being in fluid communication with a water source, the magnetic water conditioner comprising: a tank having a longitudinal axis and having an inlet operable to receive water from the water source and an outlet operable to discharge the water, wherein the inlet is disposed at a first end of the tank, and the outlet is disposed at a second end of the tank opposite the first end; anda plurality of permanent magnet members arranged in the tank in a matrix formation to define three or more flow paths parallel to the longitudinal axis, wherein the three or more flow paths are in fluid communication with each other,wherein each of the permanent magnet members comprises a rectangular tube retaining one or more permanent magnets aligned such that each end of each permanent magnet member includes a north pole of one of said one or more permanent magnets and a south pole of one of said one or more permanent magnets; andwherein one or more of the plurality of permanent magnet members includes a height extending along a first axis and a length extending along a second axis, wherein the length is greater than the height,wherein the plurality of permanent magnet members are aligned in the matrix formation such that the lengths of said plurality of permanent magnet members are not parallel to the tank longitudinal axis and the flow of water between said inlet and outlet,wherein the one or more permanent magnets comprising one or more of the permanent magnet members are aligned such that at least two sides of the one or more permanent magnet members have both a north pole and a south pole along the length of the permanent magnet member,wherein a first plurality of the permanent magnet members are aligned and spaced apart one another in the interior of the tank to form a first row in the matrix of permanent magnet members, the first row having a spacing between each of the permanent magnet members forming the first row in the matrix, wherein opposing sides of adjacent permanent magnet members forming the first row in the matrix are arranged in a singularly alternating magnetic attraction orientation such that a magnetic attraction is established in the spacing between each of the permanent magnet members forming the first row in the matrix formation,wherein a second plurality of the permanent magnet members are aligned and spaced apart one another in the interior of the tank to form a second row in the matrix of permanent magnet members, the second row having a spacing between each of the permanent magnet members forming the second row in the matrix, wherein opposing sides of adjacent permanent magnet members forming the second row in the matrix are arranged in a singularly alternating magnetic attraction orientation such that a magnetic attraction is established in the spacing between each of the permanent magnet members forming the second row in the matrix formation,wherein a third plurality of the permanent magnet members are aligned and spaced apart one another in the interior of the tank to form a third row in the matrix of permanent magnet members, the third row having a spacing between each of the permanent magnet members forming the third row in the matrix, wherein opposing sides of adjacent permanent magnet members forming the third row in the matrix are arranged in a singularly alternating magnetic attraction orientation such that a magnetic attraction is established in the spacing between each of the permanent magnet members forming the third row in the matrix formation,wherein a fourth plurality of the permanent magnet members are aligned and spaced apart one another in the interior of the tank to form a fourth row in the matrix of permanent magnet members, the fourth row having a spacing between each of the permanent magnet members forming the fourth row in the matrix, wherein opposing sides of adjacent permanent magnet members forming the fourth row in the matrix are arranged in a singularly alternating magnetic attraction orientation such that a magnetic attraction is established in the spacing between each of the permanent magnet members forming the fourth row in the matrix formation,wherein the first row in the matrix of permanent magnet members and the second row in the matrix of permanent magnet members are spaced apart from each other to form a first flow path parallel to the longitudinal axis,wherein the second row in the matrix of permanent magnet members and the third row in the matrix of permanent magnet members are spaced apart from each other to form a second flow path parallel to the longitudinal axis,wherein the third row in the matrix of permanent magnet members and the fourth row in the matrix of permanent magnet members are spaced apart from each other to form a third flow path parallel to the longitudinal axis,wherein the permanent magnet members comprising the first and second rows in the matrix formation are positioned spaced apart and opposite each other in opposite, singularly alternating magnetic relations such that a magnetic attraction is established along the first flow path between the first row of permanent magnet members and the second row of permanent magnet members in the matrix formation,wherein the permanent magnet members comprising the second and third rows in the matrix formation are positioned spaced apart and opposite each other in opposite, singularly alternating magnetic relations such that a magnetic attraction is established along the second flow path between the second row of permanent magnet members and the third row of permanent magnet members in the matrix formation,wherein the permanent magnet members comprising the third and fourth rows in the matrix formation are positioned spaced apart and opposite each other in opposite, singularly alternating magnetic relations such that a magnetic attraction is established along the third flow path between the third row of permanent magnet members and the fourth row of permanent magnet members in the matrix formation,wherein the spacing between the permanent magnet members forming the first row, the spacing between the permanent magnet members forming the second row, the spacing between the permanent magnet members forming the third row, and the spacing between the permanent magnet members forming the fourth row each serve as a flow path not parallel to the longitudinal axis to provide fluid communication between the first, second, and third flow paths parallel to the longitudinal axis, andwherein the matrix formation of the plurality of permanent magnet members allows for the water to flow from the inlet to the outlet of the tank such that the water is subjected to magnetic fields created by the permanent magnet members. 12. The magnetic water conditioner of claim 11, wherein the water source is a pump. 13. The magnetic water conditioner of claim 11, wherein the water is subjected to the magnetic fields such that the water experiences at least three magnetic field transitions per foot as it flows from the inlet to the outlet of the tank. 14. The magnetic water conditioner of claim 11, wherein the tank is cylindrical having a circumference. 15. The magnetic water conditioner of claim 11, further comprising an assembly for retaining the plurality of permanent magnet members in the matrix formation within the tank. 16. The magnetic water conditioner of claim 11, wherein the magnetic water conditioner is placed in close proximity and downstream to the water source. 17. The magnetic water conditioner of claim 11 further comprising an outlet pipe coupled to the outlet to transport the water from the magnetic water conditioner. 18. The magnetic fluid conditioner of claim 11, wherein the lengths of one or more of said plurality of permanent magnet members are aligned perpendicular to the longitudinal axis. 19. A method for magnetically treating water for agricultural purposes, the method comprising passing the water through magnetic fields inside a magnetic water conditioner, the magnetic water conditioner comprising: a tank having a longitudinal axis and an inlet disposed at a first end of the tank, the inlet operable to receive water from a water source, and an outlet disposed at a second end of the tank opposite the first end, the outlet operable to discharge the water; anda plurality of permanent magnet members arranged in the tank in a matrix formation to define three or more flow paths parallel to the longitudinal axis, wherein the three or more flow paths are in fluid communication with each other,wherein each of the permanent magnet members comprises a rectangular tube retaining one or more permanent magnets aligned such that each end of each permanent magnet member includes a north pole of one of said one or more permanent magnets and a south pole of one of said one or more permanent magnets;wherein one or more of the plurality of permanent magnet members includes a height extending along a first axis and a length extending along a second axis, wherein the length is greater than the height,wherein the plurality of permanent magnet members are aligned in the matrix formation such that the lengths of said permanent magnet members are not parallel to said longitudinal axis and the flow of water between said inlet and outlet,wherein the one or more permanent magnets comprising one or more of the permanent magnet members are aligned such that at least two sides of the one or more permanent magnet members have both a north pole and a south pole along the length of the permanent magnet member,wherein a first plurality of the permanent magnet members are aligned and spaced apart one another in the interior of the tank to form a first row in the matrix of permanent magnet members, the first row having a spacing between each of the permanent magnet members forming the first row in the matrix, wherein opposing sides of adjacent permanent magnet members forming the first row in the matrix are arranged in a singularly alternating magnetic attraction orientation such that a magnetic attraction is established in the spacing between each of the permanent magnet members forming the first row in the matrix formation,wherein a second plurality of the permanent magnet members are aligned and spaced apart one another in the interior of the tank to form a second row in the matrix of permanent magnet members, the second row having a spacing between each of the permanent magnet members forming the second row in the matrix, wherein opposing sides of adjacent permanent magnet members forming the second row in the matrix are arranged in a singularly alternating magnetic attraction orientation such that a magnetic attraction is established in the spacing between each of the permanent magnet members forming the second row in the matrix formation,wherein a third plurality of the permanent magnet members are aligned and spaced apart one another in the interior of the tank to form a third row in the matrix of permanent magnet members, the third row having a spacing between each of the permanent magnet members forming the third row in the matrix, wherein opposing sides of adjacent permanent magnet members forming the third row in the matrix are arranged in a singularly alternating magnetic attraction orientation such that a magnetic attraction is established in the spacing between each of the permanent magnet members forming the third row in the matrix formation,wherein a fourth plurality of the permanent magnet members are aligned and spaced apart one another in the interior of the tank to form a fourth row in the matrix of permanent magnet members, the fourth row having a spacing between each of the permanent magnet members forming the fourth row in the matrix, wherein opposing sides of adjacent permanent magnet members forming the fourth row in the matrix are arranged in a singularly alternating magnetic attraction orientation such that a magnetic attraction is established in the spacing between each of the permanent magnet members forming the fourth row in the matrix formation,wherein the first row in the matrix of permanent magnet members and the second row in the matrix of permanent magnet members are spaced apart from each other to form a first flow path parallel to the longitudinal axis,wherein the second row in the matrix of permanent magnet members and the third row in the matrix of permanent magnet members are spaced apart from each other to form a second flow path parallel to the longitudinal axis,wherein the third row in the matrix of permanent magnet members and the fourth row in the matrix of permanent magnet members are spaced apart from each other to form a third flow path parallel to the longitudinal axis,wherein the permanent magnet members comprising the first and second rows in the matrix formation are positioned spaced apart and opposite each other in opposite, singularly alternating magnetic relations such that a magnetic attraction is established along the first flow path between the first row of permanent magnet members and the second row of permanent magnet members in the matrix formation,wherein the permanent magnet members comprising the second and third rows in the matrix formation are positioned spaced apart and opposite each other in opposite, singularly alternating magnetic relations such that a magnetic attraction is established along the second flow path between the second row of permanent magnet members and the third row of permanent magnet members in the matrix formation,wherein the permanent magnet members comprising the third and fourth rows in the matrix formation are positioned spaced apart and opposite each other in opposite, singularly alternating magnetic relations such that a magnetic attraction is established along the third flow path between the third row of permanent magnet members and the fourth row of permanent magnet members in the matrix formation,wherein the spacing between the permanent magnet members forming the first row, the spacing between the permanent magnet members forming the second row, the spacing between the permanent magnet members forming the third row, and the spacing between the permanent magnet members forming the fourth row each serve as a flow path not parallel to the longitudinal axis to provide fluid communication between the first, second, and third flow paths parallel to the longitudinal axis, andwherein the matrix formation of the plurality of permanent magnet members allows for the water to flow from the inlet to the outlet of the tank such that the water is subjected to magnetic fields created by the permanent magnet members. 20. The method of claim 19 further comprising adding fertilizer to the magnetically treated water. 21. The method of claim 19 further comprising irrigating plants or crops with the magnetically treated water. 22. The method of claim 19 further comprising drip irrigating plants or crops with the magnetically treated water. 23. The method of claim 19, wherein the lengths of one or more of said plurality of permanent magnet members are aligned perpendicular to the longitudinal axis. 24. The method of claim 19, wherein the magnetic water conditioner further comprises an assembly for retaining said permanent magnet members in the matrix formation within said tank. 25. The method of claim 19, wherein the water is subjected to the magnetic fields such that the water experiences at least three magnetic field transitions per foot as it flows from the inlet to the outlet of the tank. 26. A method for magnetically treating fluid for agricultural purposes, the method comprising passing the fluid through magnetic fields inside a magnetic fluid conditioner, the magnetic fluid conditioner comprising: a tank having a longitudinal axis and an inlet disposed at a first end of the tank, the inlet operable to receive fluid from the fluid source, and an outlet disposed at a second end of the tank opposite the first end, the outlet operable to discharge the fluid; anda plurality of permanent magnet members arranged in the tank in a matrix formation to define three or more flow paths parallel to the longitudinal axis, wherein the three or more flow paths are in fluid communication with each other,wherein each of the permanent magnet members comprises rectangular tube retaining a plurality of permanent magnets aligned such that each end of each permanent magnet member includes a north pole of one of said plurality of permanent magnets and a south pole of one of said plurality of permanent magnets;wherein one or more of the plurality of permanent magnet members includes a height extending along a first axis and a length extending along a second axis, wherein the length is greater than the height,wherein the plurality of permanent magnet members are disposed in the interior of the tank in the matrix formation, one or more of the plurality of permanent magnet members having lengths not being parallel to the longitudinal axis of the tank,wherein two or more of the permanent magnet members are spaced apart in the matrix formation with both north poles and south poles disposed at opposite sides of each of the two or more spaced apart permanent magnet members,wherein the plurality of permanent magnets comprising one or more of the permanent magnet members are aligned such that a side of the one or more permanent magnet members has alternating polarities of the permanent magnets along its respective length of the permanent magnet member,wherein adjacent permanent magnet members in the matrix formation have opposite, alternating polarities of the permanent magnets along lengths of adjacent sides of the adjacent permanent magnet members,wherein a first plurality of the permanent magnet members are aligned and spaced apart one another in a singularly alternating magnetic attraction orientation in the interior of the tank to form a first row in the matrix of permanent magnet members, the first row having a spacing between each of the permanent magnet members forming the first row in the matrix, wherein a magnetic attraction is established in the spacing between each of the permanent magnet members forming the first row in the matrix, and wherein both north poles and south poles are disposed at opposite sides of each of the spaced apart permanent magnet members comprising the first row of permanent magnet members in the matrix formation,wherein a second plurality of the permanent magnet members are aligned and spaced apart one another in a singularly alternating magnetic attraction orientation in the interior of the tank to form a second row in the matrix of permanent magnet members,. the second row having a spacing between each of the permanent magnet members forming the second row in the matrix, wherein a magnetic attraction is established in the spacing between each of the permanent magnet members forming the second row in the matrix, and wherein both north poles and south poles are disposed at opposite sides of each of the spaced apart permanent magnet members comprising the second row of permanent magnet members in the matrix formation,wherein a third plurality of the permanent magnet members are aligned and spaced apart one another in a singularly alternating magnetic attraction orientation in the interior of the tank to form a third row in the matrix of permanent magnet members, the third row having a spacing between each of the permanent magnet members forming the third row in the matrix, wherein a magnetic attraction is established in the spacing between each of the permanent magnet members forming the third row in the matrix, and wherein both north poles and south poles are disposed at opposite sides of each of the spaced apart permanent magnet members comprising the third row of permanent magnet members in the matrix formation,wherein a fourth plurality of the permanent magnet members are aligned and spaced apart one another in a singularly alternating magnetic attraction orientation in the interior of the tank to form a fourth row in the matrix of permanent magnet members, the fourth row having a spacing between each of the permanent magnet members forming the fourth row in the matrix, wherein a magnetic attraction is established in the spacing between each of the permanent magnet members forming the fourth row in the matrix, and wherein both north poles and south poles are disposed at opposite sides of each of the spaced apart permanent magnet members comprising the fourth row of permanent magnet members in the matrix formation,wherein the first row in the matrix of permanent magnet members and the second row in the matrix of permanent magnet members are spaced apart from each other to form a first flow path parallel to the longitudinal axis,wherein the second row in the matrix of permanent magnet members and the third row in the matrix of permanent magnet members are spaced apart from each other to form a second flow path parallel to the longitudinal axis,wherein the third row in the matrix of permanent magnet members and the fourth row in the matrix of permanent magnet members are spaced apart from each other to form a third flow path parallel to the longitudinal axis,wherein the permanent magnet members comprising the first and second rows in the matrix formation are positioned spaced apart and opposite each other in an opposite, singularly alternating magnetic relation such that a magnetic attraction is established along the first flow path between the first row of permanent magnet members and the second row of permanent magnet members in the matrix formation,wherein the permanent magnet members comprising the second and third rows in the matrix formation are positioned spaced apart and opposite each other in an opposite, singularly alternating magnetic relation such that a magnetic attraction is established along the second flow path between the second row of permanent magnet members and the third row of permanent magnet members in the matrix formation,wherein the permanent magnet members comprising the third and fourth rows in the matrix formation are positioned spaced apart and opposite each other in an opposite, singularly alternating magnetic relation such that a magnetic attraction is established along the third flow path between the third row of permanent magnet members and the fourth row of permanent magnet members in the matrix formation,wherein the spacing between the permanent magnet members forming the first row, the spacing between the permanent magnet members forming the second row, the spacing between the permanent magnet members forming the third row, and the spacing between the permanent magnet members forming the fourth row each serve as a flow path not parallel to the longitudinal axis to provide fluid communication between the first, second, and third flow paths parallel to the longitudinal axis, andwherein the matrix formation of the plurality of permanent magnet members allows for the fluid to flow from the inlet to the outlet of the tank such that the fluid is subjected to magnetic fields created by the permanent magnet members. 27. The method of claim 26 further comprising adding fertilizer to the magnetically treated fluid. 28. The method of claim 26 further comprising irrigating plants or crops with the magnetically treated fluid. 29. The method of claim 26 further comprising drip irrigating plants or crops with the magnetically treated fluid. 30. The method of claim 26, wherein the lengths of one or more of the plurality of permanent magnet members are aligned perpendicular to the longitudinal axis. 31. The method of claim 26, wherein the magnetic fluid conditioner further comprises an assembly for retaining said permanent magnet members in the matrix formation within said tank. 32. The method of claim 26, wherein the fluid is subjected to the magnetic fields such that the fluid experiences at least three magnetic field transitions per foot as it flows from the inlet to the outlet of the tank. 33. A magnetic fluid conditioner for applying a magnetic flux density to a fluid flowing through a pipe to reduce the formation of precipitates in the fluid, the magnetic fluid conditioner comprising: a cylindrical member having a first end, a second end, an internal surface area, an external surface area, and a hollow internal volume of the cylindrical member extending along a longitudinal axis of the cylindrical member and defined by the boundaries of the first end, the second end and the internal surface area of the cylindrical member; anda plurality of magnets arranged in the cylindrical member in a matrix formation to define three or more flow paths parallel to the longitudinal axis, wherein the three or more flow paths are in fluid communication with each other,wherein one or more of the plurality of magnets includes a height extending along a first axis and a length extending along a second axis, wherein the length is greater than the height,wherein the plurality of magnets are disposed in the cylindrical member in the matrix formation, one or more of the plurality of magnets having lengths not being parallel to the longitudinal axis of the cylindrical member,wherein a first plurality of the magnets are arranged spaced apart adjacent one another in a singularly alternating magnetic attraction orientation to form a first row in the matrix of magnets, the first row having a spacing between each of the magnets forming the first row of magnets in the matrix formation,wherein a second plurality of the magnets are arranged spaced apart adjacent one another in a singularly alternating magnetic attraction orientation to form a second row in the matrix of magnets, the second row having a spacing between each of the magnets forming the second row of magnets in the matrix formation,wherein a third plurality of the magnets are arranged spaced apart adjacent one another in a singularly alternating magnetic attraction orientation to form a third row in the matrix of magnets, the third row having a spacing between each of the magnets forming the third row of magnets in the matrix formation,wherein a fourth plurality of the magnets are arranged spaced apart adjacent one another in a singularly alternating magnetic attraction orientation to form a fourth row in the matrix of magnets, the fourth row having a spacing between each of the magnets forming the fourth row of magnets in the matrix formation,wherein the first row in the matrix of magnets and the second row in the matrix of magnets are spaced apart from each other to form a first flow path parallel to the longitudinal axis,wherein the second row in the matrix of magnets and the third row in the matrix of magnets are spaced apart from each other to form a second flow path parallel to the longitudinal axis,wherein the third row in the matrix of magnets and the fourth row in the matrix of magnets are spaced apart from each other to form a third flow path parallel to the longitudinal axis,wherein the magnets comprising the first and second rows in the matrix formation are positioned spaced apart and opposite each other in a complementary singularly alternating relation such that a magnetic attraction is established along the first flow path between the first row of magnets and the second row of magnets in the matrix formation,wherein the magnets comprising the second and third rows in the matrix formation are positioned spaced apart and opposite each other in a complementary singularly alternating relation such that a magnetic attraction is established along the second flow path between the second row of magnets and the third row of magnets in the matrix formation,wherein the magnets comprising the third and fourth rows in the matrix formation are positioned spaced apart and onsite each other in a complementary singularly alternating relation such that a magnetic attraction is established along the third flow path between the third row of magnets and the fourth row of magnets in the matrix formation,wherein the spacing between the magnets forming the first row of magnets, the spacing between the magnets forming the second row of magnets the spacing between the magnets forming the third row, and the spacing between the magnets forming the fourth row each serve as a flow path not parallel to the longitudinal axis to provide fluid communication between the first, second, and third flow paths parallel to the longitudinal axis, andwherein the matrix formation of the plurality of magnets allows for fluid to flow from the first end of the cylindrical member to the second end of the cylindrical member, such that a fluid flowing from the first end of the cylindrical member to the second end of the cylindrical member will be subjected to a magnetic flux density.