[미국특허]
Polymers with improved ESCR for blow molding applications
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
C08F-210/16
C08F-210/02
C08F-010/14
C08F-010/08
출원번호
US-0205461
(2014-03-12)
등록번호
US-9169337
(2015-10-27)
발명자
/ 주소
Rohatgi, Vivek
Greco, Jeffrey F.
Inn, Yongwoo
Yang, Qing
Brown, Jr., Alfred E.
출원인 / 주소
Chevron Phillips Chemical Company LP
대리인 / 주소
Merchant & Gould, P.C.
인용정보
피인용 횟수 :
9인용 특허 :
59
초록▼
Disclosed herein are ethylene-based polymers having a higher molecular weight component and a lower molecular weight component, and characterized by a density greater than 0.945 g/cm3, a melt index less than 1.5 g/10 min, and a ratio of high load melt index to melt index ranging from 40 to 175. Thes
Disclosed herein are ethylene-based polymers having a higher molecular weight component and a lower molecular weight component, and characterized by a density greater than 0.945 g/cm3, a melt index less than 1.5 g/10 min, and a ratio of high load melt index to melt index ranging from 40 to 175. These polymers have the processability of chromium-based resins, but with improved stiffness and stress crack resistance, and can be used in blow molding and other end-use applications.
대표청구항▼
1. An ethylene polymer comprising a higher molecular weight component and a lower molecular weight component, wherein the ethylene polymer has a density of greater than or equal to about 0.95 g/cm3, a melt index (MI) in a range from about 0.05 to about 1.5 g/10 min, a ratio of high load melt index t
1. An ethylene polymer comprising a higher molecular weight component and a lower molecular weight component, wherein the ethylene polymer has a density of greater than or equal to about 0.95 g/cm3, a melt index (MI) in a range from about 0.05 to about 1.5 g/10 min, a ratio of high load melt index to melt index (HLMI/MI) in a range from about 40 to about 175, a bimodal molecular weight distribution, less than about 0.008 long chain branches per 1000 total carbon atoms, a non-conventional comonomer distribution, and a slope of a plot of the viscosity (Pa-sec) versus shear rate (sec−1) at 190° C. of the ethylene polymer at 100 sec−1 in a range from about 0.42 to about 0.65. 2. The polymer of claim 1, wherein the ethylene polymer has: a density in a range from about 0.95 to about 0.965 g/cm3;a HLMI in a range from about 15 to about 100 g/10 min;an ESCR (100% igepal) of at least 1000 hours; andan ESCR (10% igepal) of at least 200 hours. 3. The polymer of claim 1, wherein the ethylene polymer has: a ratio of Mw/Mn in a range from about 6 to about 18;a ratio of Mz/Mw in a range from about 6 to about 10;a Mw in a range from about 150,000 to about 375,000 g/mol;a Mn in a range from about 12,000 to about 35,000 g/mol; ora Mz in a range from about 1,000,000 to about 3,000,000 g/mol; orany combination thereof. 4. The polymer of claim 1, wherein the ethylene polymer has: a melt index in a range from about 0.1 to about 1 g/10 min;a ratio of HLMI/MI in a range from about 60 to about 160; anda density in a range from about 0.955 to about 0.965 g/cm3. 5. The polymer of claim 4, wherein the ethylene polymer is an ethylene/α-olefin copolymer. 6. The polymer of claim 1, wherein the ethylene polymer has: a CY-a parameter at 190° C. in a range from about 0.02 to about 0.3; andthe slope of the plot of the viscosity (Pa-sec) versus shear rate (sec−1) at 190° C. of the ethylene polymer at 100 sec−1 in a range from about 0.44 to about 0.5. 7. The polymer of claim 1, wherein the ethylene polymer is produced by a process comprising melt processing a mixture of a base resin and a peroxide compound in a twin screw extrusion system at a temperature in a range from about 120 to about 300° C. to generate peroxide groups at about 10-400 ppm of peroxide groups based on the weight of the base resin. 8. The polymer of claim 1, wherein the ethylene polymer is an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer. 9. An article comprising the ethylene polymer of claim 1. 10. A blow molded article comprising the ethylene polymer of claim 1. 11. An ethylene polymer comprising a higher molecular weight component and a lower molecular weight component, wherein the ethylene polymer has a density of greater than or equal to about 0.95 g/cm3, a melt index (MI) in a range from about 0.05 to about 1.5 g/10 min, a ratio of high load melt index to melt index (HLMI/MI) in a range from about 40 to about 175, a peak molecular weight (Mp) of the higher molecular weight component in a range from about 650,000 to about 1,100,000 g/mol, a Mp of the lower molecular weight component in a range from about 40,000 to about 80,000 g/mol, less than about 0.008 long chain branches per 1000 total carbon atoms, a non-conventional comonomer distribution, and a ratio of Mw/Mn in a range from about 5 to about 18. 12. The polymer of claim 11, wherein the lower molecular weight component has: a ratio of Mz/Mw in a range from about 1.5 to about 2.8;a Mp in a range from about 45,000 to about 75,000 g/mol;a Mw in a range from about 50,000 to about 80,000 g/mol; anda Mn in a range from about 10,000 to about 30,000 g/mol. 13. The polymer of claim 11, wherein the higher molecular weight component has: a ratio of Mz/Mw in a range from about 1.5 to about 2.5;a Mp in a range from about 700,000 to about 1,100,000 g/mol;a Mw in a range from about 825,000 to about 1,500,000 g/mol; anda Mn in a range from about 175,000 to about 700,000 g/mol. 14. The polymer of claim 11, wherein the ethylene polymer has: a density in a range from about 0.95 to about 0.965 g/cm3;a HLMI in a range from about 15 to about 100 g/10 min;an ESCR (100% igepal) of at least 1000 hours; andan ESCR (10% igepal) of at least 200 hours. 15. The polymer of claim 14, wherein the ethylene polymer has: a ratio of Mw/Mn in a range from about 6 to about 16; andless than or equal to about 22 wt % of the higher molecular weight component. 16. The polymer of claim 15, wherein the ethylene polymer has: a melt index in a range from about 0.2 to about 0.9. 17. The polymer of claim 11, wherein the ethylene polymer is an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer. 18. An article comprising the ethylene polymer of claim 11. 19. A blow molded article comprising the ethylene polymer of claim 11. 20. An ethylene polymer comprising a higher molecular weight component and a lower molecular weight component, wherein the ethylene polymer has a density of greater than or equal to about 0.95 g/cm3, a melt index (MI) in a range from about 0.05 to about 1.5 g/10 min, a ratio of high load melt index to melt index (HLMI/MI) in a range from about 40 to about 175, and a slope of a plot of the viscosity (Pa-sec) versus shear rate (sec−1) at 190° C. of the ethylene polymer at 100 sec−1 in a range from about 0.42 to about 0.65, and wherein the lower molecular weight component has a ratio of Mz/Mw in a range from about 1.5 to about 2.8. 21. The polymer of claim 20, wherein the ethylene polymer has: a density in a range from about 0.95 to about 0.965 g/cm3;an ESCR (100% igepal) of at least 1000 hours; andan ESCR (10% igepal) of at least 200 hours. 22. The polymer of claim 21, wherein the ethylene polymer is an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer. 23. A blow molded article comprising the ethylene polymer of claim 22. 24. An ethylene polymer comprising a higher molecular weight component and a lower molecular weight component, wherein the ethylene polymer has a density of greater than or equal to about 0.95 g/cm3, a melt index (MI) in a range from about 0.05 to about 1.5 g/10 min, a ratio of high load melt index to melt index (HLMI/MI) in a range from about 40 to about 175, a peak molecular weight (Mp) of the higher molecular weight component in a range from about 650,000 to about 1,100,000 g/mol, a Mp of the lower molecular weight component in a range from about 40,000 to about 80,000 g/mol, a ratio of Mz/Mw of the lower molecular weight component in a range from about 1.5 to about 2.8, and a ratio of Mw/Mn in a range from about 5 to about 18. 25. The polymer of claim 24, wherein the ethylene polymer has: a density in a range from about 0.95 to about 0.965 g/cm3;an ESCR (100% igepal) of at least 1000 hours; andan ESCR (10% igepal) of at least 200 hours. 26. The polymer of claim 25, wherein the ethylene polymer is an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer. 27. A blow molded article comprising the ethylene polymer of claim 26.
McDaniel, Max P.; Yang, Qing; Crain, Tony R.; Collins, Kathy S., Activator supports impregnated with group VIII transition metals for polymer property control.
Hottovy John D. (Bartlesville OK) Lawrence Frederick C. (Bartlesville OK) Lowe Barry W. (Bartlesville OK) Fangmeier James S. (Bartlesville OK), Apparatus and method for producing ethylene polymer.
VanDun, Jozef J.; Schouterden, Patrick J.; van den Berghe, Peter F. M.; Nicasy, Ruddy; Vanveorden, Johan; Gemoets, Frederick E. L.; Sehanobish, Kalyan; Jivraj, Noorallah; Dixit, Ravi S., Bimodal polyethylene composition and articles made therefrom.
McDaniel Max P. ; Benham Elizabeth A. ; Martin Shirley J. ; Collins Kathy S. ; Smith James L. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel, Max P.; Benham, Elizabeth A.; Martin, Shirley J.; Collins, Kathy S.; Smith, James L.; Hawley, Gil R.; Wittner, Christopher E.; Jensen, Michael D., Compositions that can produce polymers.
Yang, Qing; Jayaratne, Kumudini C.; Jensen, Michael D.; McDaniel, Max P.; Martin, Joel L.; Thorn, Matthew G.; Lanier, Jerry T.; Crain, Tony R., Dual metallocene catalysts for polymerization of bimodal polymers.
Yang, Qing; Jayaratne, Kumudini C.; Jensen, Michael D.; McDaniel, Max P.; Martin, Joel L.; Thorn, Matthew G.; Lanier, Jerry T.; Crain, Tony R., Dual metallocene catalysts for polymerization of bimodal polymers.
Degroot,Alexander W.; Stevens,James C.; Desjardins,Sylvie Y.; Weinhold,Jeffrey; Carnahan,Edmund M.; Gillespie,David; Vanderlende,Daniel D., High melt strength polymers and method of making same.
Hottovy John D. ; Hensley Harvey D. ; Przelomski David J. ; Cymbaluk Teddy H. ; Franklin ; III Robert K. ; Perez Ethelwoldo P., High solids slurry polymerization.
Jenkins ; III John M. (So. Charleston WV) Jones Russell L. (Chapel Hill NC) Jones Thomas M. (So. Charleston WV) Beret Samil (Danville CA), Method for fluidized bed polymerization.
Shamshoum Edwar S. ; Rauscher David J., Method of olefin polymerization utilizing hydrogen pulsing, products made therefrom, and method of hydrogenation.
Katzen Stanley J. (Buffalo Grove IL) Pullukat Thomas J. (Hoffman Estates IL) Lynch Michael W. (Schaumburg IL) Rekers Louis J. (Wyoming OH), Mixed chromium catalysts and polymerizations utilizing same.
Murray, Rex E.; Jayaratne, Kumudini C.; Yang, Qing; Martin, Joel L.; Glass, Gary L., Nano-linked heteronuclear metallocene catalyst compositions and their polymer products.
McDaniel, Max P.; Johnson, Marvin M.; Randolph, Bruce B.; Collins, Kathy S.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst composition.
Collins, Kathy S.; Palackal, Syriac J.; McDaniel, Max P.; Jensen, Michael D.; Hawley, Gil R.; Farmer, Kenneth R.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L., Organometal catalyst compositions.
Max P. McDaniel ; James B. Kimble ; Kathy S. Collins ; Elizabeth A. Benham ; Michael D. Jensen ; Gil R. Hawley ; Joel L. Martin, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; James L. Smith ; Elizabeth A. Benham ; Marvin M. Johnson ; Anthony P. Eaton ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R.; Hsieh, Eric T., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Eaton, Anthony P.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Shveima, Joseph S.; Smith, James L.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions with solid oxide supports treated with fluorine and boron.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Joel L. Martin ; Michael D. Jensen ; Gil R. Hawley, Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Wittner, Christopher E., Organometal compound catalyst.
Hawley, Gil R.; McDaniel, Max P.; Wittner, Christopher E.; Jensen, Michael D.; Martin, Joel L.; Benham, Elizabeth A.; Eaton, Anthony P.; Collins, Kathy S., Polymerization catalysts.
Martin,Joel L.; Thorn,Matthew G.; McDaniel,Max P.; Jensen,Michael D.; Yang,Qing; DesLauriers,Paul J.; Kertok,Mark E., Polymerization catalysts and process for producing bimodal polymers in a single reactor.
Yang,Qing; Jensen,Michael D.; Thorn,Matthew G.; McDaniel,Max P.; Martin,Joel L.; Crain,Tony R., Polymerization catalysts for producing high melt index polymers without the use of hydrogen.
Yang, Qing; Jensen, Michael D.; Martin, Joel L.; Thorn, Matthew G.; McDaniel, Max P.; Yu, Youlu; Rohlfing, David C., Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching.
Hanson Donald O. (Bartlesville OK), Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator.
Hasegawa Saiki (Mie-ken JPX) Yasuda Hisami (Mie-ken JPX) Yano Akihiro (Mie-ken JPX), Process for producing a
상세보기
Max P. McDaniel ; Anthony P. Eaton ; Elizabeth A. Benham ; Shawn R. Kennedy ; Ashish M. Sukhadia ; Rajendra K. Krishnaswamy ; Kathy S. Collins, Process for producing a polymer composition.
Yang, Qing; McDaniel, Max P.; Martin, Joel L.; Crain, Tony R.; Muninger, Randy S.; Lanier, Jerry T.; Fodor, Jeff S.; Deslauriers, Paul J.; Tso, Chung C.; Rohlfing, David C., Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Process for producing polymers using a composition comprising an organometal compound, a treated solid oxide compound, and an organoaluminum compound.
Martin,Joel L.; Benham,Elizabeth A.; Kertok,Mark E.; Jensen,Michael D.; McDaniel,Max P.; Hawley,Gil R.; Yang,Qing; Thorn,Matthew G.; Sukhadia,Ashish M., Resins that yield low haze films and the process for their production.
Hlavinka, Mark L.; Ding, Errun; DesLauriers, Paul; Inn, Yongwoo; Cui, Lili; Yang, Qing; Sukhadia, Ashish M.; St. Jean, Guylaine; Buck, Richard M., Higher density polyolefins with improved stress crack resistance.
Hlavinka, Mark L.; Ding, Errun; DesLauriers, Paul; Inn, Yongwoo; Cui, Lili; Yang, Qing; Sukhadia, Ashish; St. Jean, Guylaine; Buck, Richard M., Higher density polyolefins with improved stress crack resistance.
McDaniel, Max P.; Sukhadia, Ashish M.; Ding, Errun; Tso, Chung Ching; Masino, Albert P.; Yang, Qing; Guatney, Lloyd W.; St. Jean, Guylaine; Hert, Daniel G., Low density polyolefin resins and films made therefrom.
Greco, Jeff F; Yang, Qing; Rohatgi, Vivek; Hlavinka, Mark L.; Askew, Jim B, Methods for controlling die swell in dual catalyst olefin polymerization systems.
Hlavinka, Mark L.; Yang, Qing; Inn, Yongwoo; Whitte, William M.; Rathman, John R.; Secora, Steven J.; Hert, Daniel G., Polymers with improved toughness and ESCR for large-part blow molding applications.
Hlavinka, Mark L.; Yang, Qing; Inn, Yongwoo; Whitte, William M.; Rathman, John R.; Secora, Steven J.; Hert, Daniel G., Polymers with improved toughness and ESCR for large-part blow molding applications.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.