[미국특허]
Passive preload and capstan drive for surgical instruments
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
A61B-019/00
B25J-009/10
A61B-017/00
출원번호
US-0286644
(2008-09-30)
등록번호
US-9259274
(2016-02-16)
발명자
/ 주소
Prisco, Giuseppe M.
출원인 / 주소
Intuitive Surgical Operations, Inc.
인용정보
피인용 횟수 :
213인용 특허 :
17
초록▼
A robotic surgical system uses a passive preload system attached to a tendon that is wrapped around a capstan to control relaxed tension in the tendon. The passive preload system can employ a spring or other structure to apply tension to the tendon. The capstan can be driven by a motor when the tend
A robotic surgical system uses a passive preload system attached to a tendon that is wrapped around a capstan to control relaxed tension in the tendon. The passive preload system can employ a spring or other structure to apply tension to the tendon. The capstan can be driven by a motor when the tendon is needed to pull on a structural member of the instrument. For example, for the application of clamping pressure or movement of the structural member against resistance, capstan friction can produce the tendon tension that is many times the tension applied by the passive preload system. However, when the tendon is not needed to apply force to the member, the capstan can be freed, so that the spring system provides enough tension to prevent derailment or other malfunctions of the tendon. The low tension in relaxed tendons can reduce tendon friction, particularly in instruments with flexible shafts.
대표청구항▼
1. A surgical instrument comprising: a shaft;a member mounted at a distal end of the shaft, the member being mounted to permit movement of the member relative to the shaft;a mechanism attached to a proximal end of the shaft, the mechanism containing a first capstan and a first passive preload system
1. A surgical instrument comprising: a shaft;a member mounted at a distal end of the shaft, the member being mounted to permit movement of the member relative to the shaft;a mechanism attached to a proximal end of the shaft, the mechanism containing a first capstan and a first passive preload system, wherein a rotation axis of the first capstan is fixed relative to the mechanism, the first passive preload system being anchored relative to the mechanism such that the rotation axis of the first capstan is fixed relative to an anchored portion of the first passive preload system, wherein the first capstan is free to roll about the rotation axis and has a bore extending therein by which a motor can attach to and rotate the first capstan by coupling to a shaft that extends through a corresponding bore formed through a wall of the mechanism; anda first tendon running down the shaft, the first tendon having a first end, a second end, and a midportion extending therebetween, wherein the first end is attached to the member, the midportion wraps around the first capstan about the rotation axis, and the second end is attached to the first passive preload system. 2. The instrument of claim 1, wherein the first passive preload system comprises a spring element that works through compression or extension to apply force to the tendon. 3. The instrument of claim 2, wherein the spring element is selected from a group consisting of a linear spring, a coil spring, and a leaf spring. 4. The instrument of claim 1, wherein the first passive preload system comprises a constant-force spring. 5. The instrument of claim 1, wherein the first passive preload system comprises a variable radius pulley and a spring element. 6. The instrument of claim 1, wherein the first passive preload system comprises a compliant member that works through compression or extension to apply force to the tendon. 7. The instrument of claim 6, wherein the compliant member is selected from a group consisting of a cantilever beam and elastic bands. 8. The instrument of claim 1, further comprising: a first jointed member that is mechanically constrained to one degree of freedom of motion with respect to a previous member; a second passive preload system in the mechanism; a second capstan in the mechanism, wherein the second capstan is free to roll and has a coupling through which a second motor can attach to and rotate the second capstan; and a second tendon running down the shaft and wrapping around the second capstan, the second tendon having a first end attached to the member and a second end attached to the second passive preload system; wherein the first and second tendons act on the member to produce motion in opposing directions. 9. The instrument of claim 1, wherein the member is mechanically constrained to two degree of freedom of motion with respect to a previous member; and wherein the instrument further comprises: a second capstan; a second passive preload system; a second tendon running down the shaft and wrapping around the second capstan, the second tendon having a first end attached to the member and a second end attached to the second passive preload system; a third capstan; a third passive preload system; and a third tendon running down the shaft and wrapping around the third capstan, the third tendon having a first end attached to the member and a second end attached to the third passive preload system, wherein the first and second tendons act on the member to produce bidirectional motion in a first degree of freedom of the member and the first and third tendons act on the member to produce bidirectional motion in a second degree of freedom of the member. 10. The instrument of claim 1, wherein the shaft is flexible. 11. The instrument of claim 1, further comprising a sheath attached to the mechanism and extending through the shaft, wherein the first tendon traverses the shaft inside the sheath. 12. The instrument of claim 1, wherein the rotation axis of the first capstan is perpendicular to the shaft. 13. The instrument of claim 1, wherein the rotation axis of the first capstan is parallel to the shaft. 14. The instrument of claim 1, wherein the coupling of the first capstan comprises a detachable connection mechanism including a spring loaded projection that is shaped to fit into a slot in a motor pinion. 15. The instrument of claim 1, wherein the first capstan is sufficiently flexible that tightening of the first tendon around the capstan increases the friction between the capstan and the pinion. 16. A robotic surgical system comprising: a docking port containing a first drive motor; anda first instrument including: a shaft;a member mounted at a distal end of the shaft, the member being mounted to permit movement of the member relative to the shaft;a mechanism attached to a proximal end of the shaft, the mechanism containing a first capstan and a first passive preload system, wherein a rotation axis of the first capstan is fixed relative to the mechanism, the first passive preload system being anchored relative to the mechanism and wherein the first capstan has a bore extending therein coupling with a shaft extending through a corresponding bore formed through a wall of the mechanism and by which the first drive motor attaches to and is able to rotate the first capstan about the rotation axis; anda first tendon running down the shaft, the first tendon having a first end attached to the member, a second end attached to the first passive preload system, and wherein a midportion of the first tendon wraps around the first capstan about the rotation axis. 17. The system of claim 16, wherein: the docking port further comprises a second drive motor; and the first instrument further comprises a joint that permits a first degree of freedom of motion of the member; a second passive preload system in the mechanism; a second capstan in the mechanism, wherein the second capstan has a coupling through which the second drive motor attaches to and is able to rotate the second capstan; and a second tendon running down the shaft and wrapping around the second capstan, the second tendon having a first end attached to the member and a second end attached to the second passive preload system; wherein the first and second tendons act to move the member in opposite directions in the first degree of freedom of motion of the member. 18. The system of claim 17, further comprising a computer system that executes a program implementing a process for operating the first instrument, wherein the process includes operating the first drive motor to apply torque to the first capstan to pull in the first tendon while at the same time permitting the second capstan to rotate freely. 19. The system of claim 18, wherein the first instrument further comprises a sensor that measures a position of the member, the computer system using information from the sensor as feedback for control of the first and second drive motors when moving the member. 20. The system of claim 19, wherein the computer systems uses the information from the sensor to choose the torque that the first drive motor applies to the first capstan. 21. A method for operating the medical instrument of claim 1, wherein the first tendon attached to move the member in one direction along a degree of freedom of motion of the member, the medical instrument of claim 1 further comprising a second tendon attached to move the member in an opposite direction along the degree of freedom of motion of the member, the method comprising: applying a first torque to the first capstan about which the first tendon is wrapped; andat the same time, freeing a second capstan about which the second tendon is wrapped so that a second passive preload system attached to an end of the second tendon extending from the second capstan controls tension in the second tendon. 22. The process of claim 21, further comprising: applying a second torque to the second capstan; andat the same time as applying the second torque, freeing the first capstan so that the first passive preload system attached to an end of the first tendon extending from the first capstan controls tension of the first tendon. 23. The process of claim 21, wherein applying the first torque to the first capstan comprises operating a motor that is mechanically coupled to rotate the first capstan. 24. The process of claim 21, further comprising: sensing a position of the member; and choosing the first torque according a difference between a sensed position of the member and a desired position of the member.
Madhani,Akhil J.; Salisbury,J. Kenneth, Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity.
Belyanin Petr N. (ulitsa Tukhachevskogo ; 23 ; korpus 2 ; Kv. 186 all ofMoscow SUX) Frolov Konstantin V. (Ljublinskaya ulitsa ; 3 ; kv. 123 all ofMoscow SUX) Kobrinsky Aron E. (ulitsa Dmitria Ulyanov, Mechanical arm.
Shelton, IV, Frederick E.; Morgan, Jerome R.; Swayze, Jeffrey S.; Vendely, Michael J.; Aronhalt, Taylor W., Actuator for releasing a layer of material from a surgical end effector.
Kerr, Wendy A.; Lytle, IV, Thomas W.; Overmyer, Mark D.; Swensgard, Brett E.; Leimbach, Richard L.; Sackett, Kevin D., Articulatable surgical instrument comprising a firing drive.
Jaworek, Gary S.; Koch, Jr., Robert L.; Auld, Michael D.; Kimsey, John S.; Baber, Daniel L.; Leimbach, Richard L.; Ulrich, Daniel J., Articulatable surgical instruments with conductive pathways for signal communication.
Shelton, IV, Frederick E.; Setser, Michael E.; Doll, Kevin R.; Morgan, Jerome R., Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism.
Woodard, Jr., James A.; Scheib, Charles J.; Boudreaux, Chad P.; Bruewer, Dean B.; Schwemberger, Richard F.; Schall, Christopher J.; Morgan, Jerome R.; Simms, Robert J.; Swayze, Jeffrey S.; Ouwerkerk, John N., Assembly for fastening tissue comprising a compressible layer.
Shelton, IV, Frederick E.; Morgan, Jerome R.; Yates, David C.; Baxter, III, Chester O.; Beckman, Andrew T., Charging system that enables emergency resolutions for charging a battery.
Baber, Daniel L.; Swayze, Jeffrey S.; Beckman, Andrew T.; Miller, Christopher C.; Scheib, Charles J.; Float, Jamison J.; O'Kelly, Matthew E., Circuitry and sensors for powered medical device.
Cropper, Michael S.; Setser, Michael E.; Jamison, Barry T.; Kistler, Paul H.; Dugan, John R.; Patel, Sudhir B., Closure lockout systems for surgical instruments.
Yates, David C.; Hall, Steven G.; Schellin, Emily A.; Shelton, IV, Frederick E., Conductor arrangements for electrically powered surgical instruments with rotatable end effectors.
Shelton, IV, Frederick E.; Harris, Jason L.; Beckman, Andrew T., Control techniques and sub-processor contained within modular shaft with select control processing from handle.
Moore, Kyle P.; Shelton, IV, Frederick E.; Weisenburgh, II, William B.; Morgan, Jerome R.; Ransick, Mark H.; Timperman, Eugene L., Detachable motor powered surgical instrument.
Moore, Kyle P.; Shelton, IV, Frederick E.; Weisenburgh, II, William B.; Morgan, Jerome R.; Ransick, Mark H.; Timperman, Eugene L., Detachable motor powered surgical instrument.
Moore, Kyle P.; Shelton, IV, Frederick E.; Weisenburgh, II, William B.; Morgan, Jerome R.; Ransick, Mark H.; Timperman, Eugene L., Detachable motor powered surgical instrument.
Moore, Kyle P.; Shelton, IV, Frederick E.; Weisenburgh, II, William B.; Morgan, Jerome R.; Ransick, Mark H.; Timperman, Eugene L., Detachable motor powered surgical instrument.
Shelton, IV, Frederick E.; Stokes, Michael J.; Parihar, Shailendra K.; Baxter, III, Chester O., Drive system decoupling arrangement for a surgical instrument.
Lytle, IV, Thomas W.; Leimbach, Richard L.; Kerr, Wendy A.; Swensgard, Brett E.; Sackett, Kevin D.; Overmyer, Mark D., Drive system lockout arrangements for modular surgical instruments.
Schmid, Katherine J.; Morgan, Jerome R.; Korvick, Donna L.; Shelton, IV, Frederick E., End effector comprising a tissue thickness compensator and progressively released attachment members.
Leimbach, Richard L.; Shelton, IV, Frederick E.; Morgan, Jerome R.; Schellin, Emily A., End effector detection and firing rate modulation systems for surgical instruments.
Shelton, IV, Frederick E.; Schmid, Katherine J.; Scheib, Charles J.; Aronhalt, Taylor W.; Swayze, Jeffrey S.; Contiliano, Joseph H.; Yang, Chunlin; Henderson, Cortney E.; Aldridge, Jeffrey L., End effector including an implantable arrangement.
Swayze, Jeffrey S.; Hueil, Joseph C.; Morgan, Jerome R.; Shelton, IV, Frederick E., Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement.
Swayze, Jeffrey S.; Hueil, Joseph C.; Morgan, Jerome R.; Shelton, IV, Frederick E., Fastener cartridge assembly comprising a fixed anvil and different staple heights.
Aronhalt, Taylor W.; Vendely, Michael J.; Lloyd, Brandon J.; Miller, Michael J.; Setser, Michael E.; Shelton, IV, Frederick E., Fastener cartridge comprising a releasably attached tissue thickness compensator.
Huitema, Thomas W.; Schellin, Emily A.; Shelton, IV, Frederick E.; Hueil, Geoffrey C.; Huang, Zhifan F., Fastener cartridge compromising fastener cavities including fastener control features.
Harris, Jason L.; Casella, Lucia M.; Zeiner, Mark S.; Smith, Bret W.; Crainich, Lawrence; Shelton, IV, Frederick E.; Morgan, Jerome R.; Worthington, Sarah A., Fastener cartridge for creating a flexible staple line.
Aronhalt, Taylor W.; Shelton, IV, Frederick E.; Vendely, Michael J.; Schellin, Emily A.; Zeiner, Mark S., Fastening system comprising a firing member lockout.
Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D.; Swensgard, Brett E.; Lytle, IV, Thomas W.; Shelton, IV, Frederick E.; Houser, Kevin L., Feedback algorithms for manual bailout systems for surgical instruments.
Morgan, Jerome R.; Swayze, Jeffrey S.; Shelton, IV, Frederick E.; Schellin, Emily A.; Hall, Steven G., Firing member retraction devices for powered surgical instruments.
Schellin, Emily A.; Vendely, Michael J.; Weaner, Lauren S.; Shelton, IV, Frederick E.; Aronhalt, Taylor W.; Reynolds, II, Donald L.; Timmer, Mark D.; Donners, Jackie J.; Barton, Trevor J., Implantable layers and methods for altering implantable layers for use with surgical fastening instruments.
Schellin, Emily A.; Vendely, Michael J.; Weaner, Lauren S.; Widenhouse, Christopher W.; Aronhalt, Taylor W.; Reynolds, II, Donald L.; Miller, Michael J.; Shelton, IV, Frederick E.; Barton, Trevor J., Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments.
Vendely, Michael J.; Timmer, Mark D.; Donners, Jackie J.; Reynolds, II, Donald L.; Aronhalt, Taylor W.; Barton, Trevor J., Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument.
Leimbach, Richard L.; Lytle, IV, Thomas W.; Kerr, Wendy A.; Swensgard, Brett E.; Sackett, Kevin D.; Overmyer, Mark D., Interchangeable shaft assemblies for use with a surgical instrument.
Overmyer, Mark D.; Swensgard, Brett E.; Adams, Shane R.; Lytle, IV, Thomas W.; Leimbach, Richard L.; Shelton, IV, Frederick E.; Houser, Kevin L., Interface systems for use with surgical instruments.
Morgan, Jerome R.; Baxter, III, Chester O.; Shelton, IV, Frederick E.; Knight, Gary W., Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors.
Shelton, IV, Frederick E.; Overmyer, Mark D.; Yates, David C.; Harris, Jason L., Mechanisms for compensating for drivetrain failure in powered surgical instruments.
Parihar, Shailendra K.; Koch, Jr., Robert L.; Shelton, IV, Frederick E., Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts.
Kimsey, John S.; Nalagatla, Anil K.; Shelton, IV, Frederick E.; Houser, Kevin L., Modular motor driven surgical instruments with status indication arrangements.
Beckman, Andrew T.; Shelton, IV, Frederick E.; Morgan, Jerome R.; Yates, David C.; Baxter, III, Chester O.; Uth, Joshua R.; Savage, Jeffrey L.; Harris, Jason L., Modular stapling assembly.
Shelton, IV, Frederick E.; Morgan, Jerome R.; Harris, Jason L., Monitoring speed control and precision incrementing of motor for powered surgical instruments.
Parihar, Shailendra K.; Koch, Jr., Robert L.; Baxter, III, Chester O.; Shelton, IV, Frederick E., Motor driven surgical instruments with lockable dual drive shafts.
Overmyer, Mark D.; Swayze, Jeffrey S.; Beckman, Andrew T.; Schultz, Darwin L.; Baber, Daniel L.; Yates, David C.; Nalagatla, Anil K., Multiple motor control for powered medical device.
Baber, Daniel L.; Swayze, Jeffrey S.; Beckman, Andrew T.; Miller, Christopher C.; Scheib, Charles J.; Shelton, IV, Frederick E.; Stokes, Michael J.; Stulen, Foster B., Multiple sensors with one sensor affecting a second sensor's output or interpretation.
Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D.; Swensgard, Brett E.; Shelton, IV, Frederick E.; Houser, Kevin L., Power management through segmented circuit.
Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D.; Swensgard, Brett E.; Shelton, IV, Frederick E.; Houser, Kevin L., Power management through segmented circuit and variable voltage protection.
Leimbach, Richard L.; Adams, Shane R.; Swensgard, Brett E.; Overmyer, Mark D., Power management through sleep options of segmented circuit and wake up control.
Smith, Bret W.; Abbott, Daniel J.; Schwemberger, Richard F.; Shelton, IV, Frederick E.; Boudreaux, Chad P.; Swensgard, Brett E.; Laurent, Ryan J., Powered surgical cutting and stapling apparatus with manually retractable firing system.
Baxter, III, Chester O.; Shelton, IV, Frederick E.; Schmid, Katherine J.; Morgan, Jerome R.; Scheib, Charles J.; Cropper, Michael S.; Aronhalt, Taylor W.; Hall, Steven G.; Timm, Richard W.; Lang, Matthew M., Retainer assembly including a tissue thickness compensator.
Leimbach, Richard L.; Overmyer, Mark D.; Swensgard, Brett E.; Adams, Shane R., Sensor arrangements for absolute positioning system for surgical instruments.
Baxter, III, Chester O.; Shelton, IV, Frederick E.; Swayze, Jeffrey S.; Aronhalt, Taylor W.; Schmid, Katherine J., Staple cartridge comprising a compressible layer.
Shelton, IV, Frederick E.; Murray, Michael A.; Hess, Christopher J.; Weisenburgh, II, William B.; Morgan, Jerome R.; Hall, Steven G., Staple cartridge comprising a staple driver arrangement.
Shelton, IV, Frederick E.; Weaner, Lauren S.; Morgan, Jerome R.; Vendely, Michael J.; Aronhalt, Taylor W.; Baxter, III, Chester O.; Zeiner, Mark S., Staple cartridge comprising a tissue thickness compensator.
Shelton, IV, Frederick E.; Baxter, III, Chester O.; Swayze, Jeffrey S.; Morgan, Jerome R.; Rhee, Sora; Aronhalt, Taylor W., Staple cartridge comprising a variable thickness compressible portion.
Shelton, IV, Frederick E.; Weaner, Lauren S.; Morgan, Jerome R.; Vendely, Michael J.; Aronhalt, Taylor W., Staple cartridge comprising an adjunct material.
Baxter, III, Chester O.; Shelton, IV, Frederick E.; Swayze, Jeffrey S.; Aronhalt, Taylor W.; Schmid, Katherine J., Staple cartridge comprising an implantable layer.
Shelton, IV, Frederick E.; Baxter, III, Chester O.; Aronhalt, Taylor W.; Morgan, Jerome R.; Young, Joseph E., Staple cartridge comprising multiple regions.
Hess, Christopher J.; Morgan, Jerome R.; Shelton, IV, Frederick E.; Weisenburgh, II, William B., Staple cartridge comprising staples including a lateral base.
Schmid, Katherine J.; Baxter, III, Chester O.; Aronhalt, Taylor W.; Young, Joseph E.; Shelton, IV, Frederick E., Staple cartridge including collapsible deck arrangement.
Swayze, Jeffrey S.; Hueil, Joseph C.; Morgan, Jerome R.; Shelton, IV, Frederick E., Stapling assembly configured to produce different formed staple heights.
Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D.; Swensgard, Brett E.; Lytle, IV, Thomas W.; Shelton, IV, Frederick E.; Houser, Kevin L., Sterilization verification circuit.
Beckman, Andrew T.; Nalagatla, Anil K.; Hibner, John A.; Shelton, IV, Frederick E., Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band.
Beckman, Andrew T.; Nalagatla, Anil K.; Koch, Jr., Robert L.; Hibner, John A.; Shelton, IV, Frederick E., Surgical apparatus configured to track an end-of-life parameter.
Morgan, Jerome R.; Shelton, IV, Frederick E., Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status.
Huitema, Thomas W.; Scheib, Charles J.; Henderson, Cortney E.; Shelton, IV, Frederick E.; Harris, Jason L., Surgical end effectors with firing element monitoring arrangements.
Huitema, Thomas W.; Schellin, Emily A.; Hueil, Geoffrey C.; Shelton, IV, Frederick E., Surgical fastener cartridges with driver stabilizing arrangements.
Shelton, IV, Frederick E.; Swayze, Jeffrey S.; Baxter, III, Chester O., Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system.
Shelton, IV, Frederick E.; Morgan, Jerome R.; Harris, Jason L.; Swayze, Jeffrey S.; Baxter, III, Chester O., Surgical instrument assembly comprising a flexible articulation system.
Baxter, III, Chester O.; Dunki-Jacobs, Adam R.; Swayze, Jeffrey S.; Baber, Daniel L.; Shelton, IV, Frederick E., Surgical instrument assembly comprising a lockable articulation system.
Parihar, Shailendra K.; Kimsey, John S.; Koch, Jr., Robert L.; Nalagatla, Anil K.; Nguyen, Anthony T., Surgical instrument comprising a gap setting system.
Overmyer, Mark D.; Auld, Michael D.; Adams, Shane R.; Shelton, IV, Frederick E.; Harris, Jason L., Surgical instrument comprising a lockable battery housing.
Lytle, IV, Thomas W.; Overmyer, Mark D.; Adams, Shane R.; Leimbach, Richard L.; Shelton, IV, Frederick E.; Swensgard, Brett E.; Houser, Kevin L., Surgical instrument comprising interactive systems.
Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D.; Swensgard, Brett E.; Lytle, IV, Thomas W.; Shelton, IV, Frederick E.; Houser, Kevin L., Surgical instrument control circuit having a safety processor.
Morgan, Jerome R.; Shelton, IV, Frederick E., Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps.
Kerr, Wendy A.; Lytle, IV, Thomas W.; Overmyer, Mark D.; Swensgard, Brett E.; Sackett, Kevin D.; Leimbach, Richard L.; Houser, Kevin L.; Morgan, Jerome R.; Shelton, IV, Frederick E., Surgical instrument system comprising lockable systems.
Morgan, Jerome R.; Shelton, IV, Frederick E., Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement.
Lytle, IV, Thomas W.; Shelton, IV, Frederick E.; Morgan, Jerome R., Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member.
Shelton, IV, Frederick E.; Baxter, III, Chester O., Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
Hunter, Morgan R.; Schultz, Darwin L.; Worthington, Sarah A.; Shelton, IV, Frederick E.; Weaner, Lauren S.; Vendely, Michael J., Surgical instrument with articulating and axially translatable end effector.
Shelton, IV, Frederick E.; Baxter, III, Chester O.; Harris, Jason L.; Swayze, Jeffrey S., Surgical instruments with articulatable end effectors and improved firing beam support arrangements.
Shelton, IV, Frederick E.; Morgan, Jerome R.; Harris, Jason L.; Swayze, Jeffrey S.; Baxter, III, Chester O., Surgical instruments with articulatable end effectors and movable firing beam support arrangements.
Hunter, Morgan R.; Schultz, Darwin L.; Dunki-Jacobs, Adam R.; Baxter, III, Chester O.; Swayze, Jeffrey S., Surgical instruments with tensioning arrangements for cable driven articulation systems.
Overmyer, Mark D.; Yates, David C.; Shelton, IV, Frederick E.; Adams, Shane R.; Leimbach, Richard L., Surgical stapler having motor control based on an electrical parameter related to a motor current.
Overmyer, Mark D.; Yates, David C.; Shelton, IV, Frederick E.; Adams, Shane R.; Harris, Jason L., Surgical stapler having temperature-based motor control.
Schmid, Katherine J.; Baxter, III, Chester O.; Aronhalt, Taylor W.; Young, Joseph E.; Shelton, IV, Frederick E., Surgical stapler with stationary staple drivers.
Hall, Steven G.; Tanguay, Randall J.; Messerly, Jeffrey D.; Robertson, Galen C.; Zwolinski, Andrew M.; Shelton, IV, Frederick E.; Hueil, Geoffrey C.; Ortiz, Mark S.; Hoffman, Douglas B.; Weizman, Patrick A.; Bruewer, Dean B.; Blair, Gregory B., Surgical stapling apparatus including firing force regulation.
Hall, Steven G.; Tanguay, Randall J.; Messerly, Jeffrey D.; Robertson, Galen C.; Zwolinski, Andrew M.; Shelton, IV, Frederick E.; Hueil, Geoffrey C.; Ortiz, Mark S.; Hoffman, Douglas B.; Weizman, Patrick A.; Bruewer, Dean B.; Blair, Gregory B., Surgical stapling apparatus including firing force regulation.
Hall, Steven G.; Tanguay, Randall J.; Messerly, Jeffrey D.; Robertson, Galen C.; Zwolinski, Andrew M.; Shelton, IV, Frederick E., Surgical stapling apparatuses with lockable end effector positioning systems.
Hall, Steven G.; Tanguay, Randall J.; Messerly, Jeffrey D.; Robertson, Galen C.; Zwolinski, Andrew M.; Shelton, IV, Frederick E.; Hueil, Geoffrey C.; Ortiz, Mark S.; Hoffman, Douglas B.; Weizman, Patrick A.; Bruewer, Dean B.; Blair, Gregory B., Surgical stapling assembly comprising a selector arrangement.
Shelton, IV, Frederick E.; Setser, Michael E.; Weisenburgh, II, William B., Surgical stapling instrument configured to apply a compressive pressure to tissue.
Hess, Christopher J.; Weisenburgh, II, William B.; Shelton, IV, Frederick E.; Morgan, Jerome R., Surgical stapling instrument having a releasable buttress material.
Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D.; Swensgard, Brett E.; Lytle, IV, Thomas W.; Shelton, IV, Frederick E.; Houser, Kevin L., Surgical stapling instrument system.
Shelton, IV, Frederick E.; Setser, Michael E.; Weisenburgh, II, William B., Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument.
Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D.; Swensgard, Brett E.; Lytle, IV, Thomas W.; Shelton, IV, Frederick E.; Houser, Kevin L., Systems and methods for controlling a segmented circuit.
Shelton, IV, Frederick E.; Swensgard, Brett E.; Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D.; Houser, Kevin L., Systems and methods for controlling a segmented circuit.
Shelton, IV, Frederick E.; Harris, Jason L.; Swensgard, Brett E.; Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D., Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures.
Shelton, IV, Frederick E.; Harris, Jason L.; Swensgard, Brett E.; Leimbach, Richard L.; Adams, Shane R.; Overmyer, Mark D., Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures.
Baxter, III, Chester O.; Shelton, IV, Frederick E.; Schmid, Katherine J.; Aronhalt, Taylor W.; Johnson, Gregory W.; Stammen, John L.; Knight, Gary W.; Widenhouse, Christopher W.; Weisenburgh, II, William B.; Mutchler, Stephanie A.; Bedard, Timothy S., Tissue thickness compensators.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.