[미국특허]
Polymers with improved toughness and ESCR for large-part blow molding applications
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
C08L-023/08
C08F-004/653
C08F-004/6592
C08F-210/16
C08F-004/659
출원번호
US-0205422
(2014-03-12)
등록번호
US-9273170
(2016-03-01)
발명자
/ 주소
Hlavinka, Mark L.
Yang, Qing
Inn, Yongwoo
Whitte, William M.
Rathman, John R.
Secora, Steven J.
Hert, Daniel G.
출원인 / 주소
Chevron Phillips Chemical Company LP
대리인 / 주소
Merchant & Gould P.C.
인용정보
피인용 횟수 :
6인용 특허 :
57
초록▼
Disclosed herein are ethylene-based polymers having a density greater than 0.945 g/cm3, a high load melt index less than 25 g/10 min, a peak molecular weight ranging from 52,000 to 132,000 g/mol, and an environmental stress crack resistance of at least 250 hours. These polymers have the processabili
Disclosed herein are ethylene-based polymers having a density greater than 0.945 g/cm3, a high load melt index less than 25 g/10 min, a peak molecular weight ranging from 52,000 to 132,000 g/mol, and an environmental stress crack resistance of at least 250 hours. These polymers have the processability of chromium-based resins, but with improved impact strength and stress crack resistance, and can be used in large-part blow molding applications.
대표청구항▼
1. An ethylene polymer having a density of greater than or equal to about 0.945 g/cm3, a high load melt index (HLMI) in a range from about 1 to about 25 g/10 min, a peak molecular weight (Mp) in a range from about 52,000 to about 132,000 g/mol, a Mn in a range from about 30,000 to about 60,000 g/mol
1. An ethylene polymer having a density of greater than or equal to about 0.945 g/cm3, a high load melt index (HLMI) in a range from about 1 to about 25 g/10 min, a peak molecular weight (Mp) in a range from about 52,000 to about 132,000 g/mol, a Mn in a range from about 30,000 to about 60,000 g/mol, a Mz in a range from about 1,750,000 to about 4,000,000 g/mol, a ratio of Mw/Mn in a range from about 5 to about 22, less than about 0.008 long chain branches per 1000 total carbon atoms, and an environmental stress crack resistance (ESCR) of at least 250 hours. 2. The polymer of claim 1, wherein the ethylene polymer has: a Mn in a range from about 30,000 to about 55,000 g/mol; anda ratio of Mw/Mn in a range from about 6 to about 18. 3. The polymer of claim 1, wherein the ethylene polymer has: a zero-shear viscosity in a range from about 5×105 to about 1×109 Pa-sec; anda viscosity at 100 sec−1 in a range from about 2000 to about 4000 Pa-sec. 4. The polymer of claim 1, wherein the ethylene polymer has: a density in a range from about 0.95 to about 0.965 g/cm3;a HLMI in a range from about 1 to about 20 g/10 min;a Mp in a range from about 60,000 to about 120,000 g/mol; andan ESCR of at least 1000 hours. 5. The polymer of claim 1, wherein the ethylene polymer has: a number of short chain branches per 1000 total carbon atoms at Mz that is greater than at Mn. 6. The polymer of claim 1, wherein the ethylene polymer has a bimodal molecular weight distribution. 7. The polymer of claim 1, wherein the ethylene polymer has: a Tensile Impact greater than or equal to about 450 kJ/m2; anda Charpy Impact in a range from about 25 to about 75 kJ/m2. 8. The polymer of claim 1, wherein the ethylene polymer is an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer. 9. An article comprising the ethylene polymer of claim 1. 10. A blow molded article comprising the ethylene polymer of claim 1. 11. An ethylene polymer having a density of greater than or equal to about 0.945 g/cm3, a high load melt index (HLMI) in a range from about 2 to about 20 g/10 min, a viscosity at 100 sec−1 in a range from about 2000 to about 4000 Pa-sec, a weight-average molecular weight (Mw) in a range from about 275,000 to about 800,000 g/mol, a number-average molecular weight (Mn) in a range from about 30,000 to about 60,000 g/mol, and a ratio of Mw/Mn in a range from about 5 to about 22. 12. The polymer of claim 11, wherein the ethylene polymer has: a zero-shear viscosity in a range from about 5×105 to about 1×109 Pa-sec; anda viscosity at 100 sec−1 in a range from about 2000 to about 3800 Pa-sec. 13. The polymer of claim 11, wherein the ethylene polymer has: a density in a range from about 0.95 to about 0.965 g/cm3;a Mw in a range from about 375,000 to about 650,000 g/mol; anda Mp in a range from about 65,000 to about 115,000 g/mol. 14. The polymer of claim 11, wherein the ethylene polymer has an ESCR of at least 1000 hours. 15. The polymer of claim 11, wherein the ethylene polymer has: a bimodal molecular weight distribution;less than about 0.008 long chain branches per 1000 total carbon atoms; anda number of short chain branches per 1000 total carbon atoms at Mz that is greater than at Mn. 16. The polymer of claim 11, wherein the ethylene polymer is an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer. 17. An article comprising the ethylene polymer of claim 11. 18. The polymer of claim 1, wherein the ethylene polymer is an ethylene homopolymer. 19. The polymer of claim 1, wherein the ethylene polymer is an ethylene/1-hexene copolymer. 20. The polymer of claim 11, wherein the ethylene polymer is an ethylene homopolymer. 21. The polymer of claim 11, wherein the ethylene polymer is an ethylene/1-hexene copolymer.
McDaniel, Max P.; Yang, Qing; Crain, Tony R.; Collins, Kathy S., Activator supports impregnated with group VIII transition metals for polymer property control.
Hottovy John D. (Bartlesville OK) Lawrence Frederick C. (Bartlesville OK) Lowe Barry W. (Bartlesville OK) Fangmeier James S. (Bartlesville OK), Apparatus and method for producing ethylene polymer.
Yang, Qing; McDaniel, Max P.; Crain, Tony R.; Yu, Youlu; Inn, Yongwoo, Catalyst system with three metallocenes for producing broad molecular weight distribution polymers.
McDaniel Max P. ; Benham Elizabeth A. ; Martin Shirley J. ; Collins Kathy S. ; Smith James L. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel, Max P.; Benham, Elizabeth A.; Martin, Shirley J.; Collins, Kathy S.; Smith, James L.; Hawley, Gil R.; Wittner, Christopher E.; Jensen, Michael D., Compositions that can produce polymers.
Yang, Qing; Jayaratne, Kumudini C.; Jensen, Michael D.; McDaniel, Max P.; Martin, Joel L.; Thorn, Matthew G.; Lanier, Jerry T.; Crain, Tony R., Dual metallocene catalysts for polymerization of bimodal polymers.
Yang, Qing; Jayaratne, Kumudini C.; Jensen, Michael D.; McDaniel, Max P.; Martin, Joel L.; Thorn, Matthew G.; Lanier, Jerry T.; Crain, Tony R., Dual metallocene catalysts for polymerization of bimodal polymers.
Degroot,Alexander W.; Stevens,James C.; Desjardins,Sylvie Y.; Weinhold,Jeffrey; Carnahan,Edmund M.; Gillespie,David; Vanderlende,Daniel D., High melt strength polymers and method of making same.
Hottovy John D. ; Hensley Harvey D. ; Przelomski David J. ; Cymbaluk Teddy H. ; Franklin ; III Robert K. ; Perez Ethelwoldo P., High solids slurry polymerization.
Jenkins ; III John M. (So. Charleston WV) Jones Russell L. (Chapel Hill NC) Jones Thomas M. (So. Charleston WV) Beret Samil (Danville CA), Method for fluidized bed polymerization.
Shamshoum Edwar S. ; Rauscher David J., Method of olefin polymerization utilizing hydrogen pulsing, products made therefrom, and method of hydrogenation.
Katzen Stanley J. (Buffalo Grove IL) Pullukat Thomas J. (Hoffman Estates IL) Lynch Michael W. (Schaumburg IL) Rekers Louis J. (Wyoming OH), Mixed chromium catalysts and polymerizations utilizing same.
Murray, Rex E.; Jayaratne, Kumudini C.; Yang, Qing; Martin, Joel L.; Glass, Gary L., Nano-linked heteronuclear metallocene catalyst compositions and their polymer products.
McDaniel, Max P.; Johnson, Marvin M.; Randolph, Bruce B.; Collins, Kathy S.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst composition.
Collins, Kathy S.; Palackal, Syriac J.; McDaniel, Max P.; Jensen, Michael D.; Hawley, Gil R.; Farmer, Kenneth R.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L., Organometal catalyst compositions.
Max P. McDaniel ; James B. Kimble ; Kathy S. Collins ; Elizabeth A. Benham ; Michael D. Jensen ; Gil R. Hawley ; Joel L. Martin, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; James L. Smith ; Elizabeth A. Benham ; Marvin M. Johnson ; Anthony P. Eaton ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R.; Hsieh, Eric T., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Eaton, Anthony P.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Shveima, Joseph S.; Smith, James L.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions with solid oxide supports treated with fluorine and boron.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Joel L. Martin ; Michael D. Jensen ; Gil R. Hawley, Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Wittner, Christopher E., Organometal compound catalyst.
Hawley, Gil R.; McDaniel, Max P.; Wittner, Christopher E.; Jensen, Michael D.; Martin, Joel L.; Benham, Elizabeth A.; Eaton, Anthony P.; Collins, Kathy S., Polymerization catalysts.
Martin,Joel L.; Thorn,Matthew G.; McDaniel,Max P.; Jensen,Michael D.; Yang,Qing; DesLauriers,Paul J.; Kertok,Mark E., Polymerization catalysts and process for producing bimodal polymers in a single reactor.
Yang,Qing; Jensen,Michael D.; Thorn,Matthew G.; McDaniel,Max P.; Martin,Joel L.; Crain,Tony R., Polymerization catalysts for producing high melt index polymers without the use of hydrogen.
Yang, Qing; Jensen, Michael D.; Martin, Joel L.; Thorn, Matthew G.; McDaniel, Max P.; Yu, Youlu; Rohlfing, David C., Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching.
Hanson Donald O. (Bartlesville OK), Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator.
Hasegawa Saiki (Mie-ken JPX) Yasuda Hisami (Mie-ken JPX) Yano Akihiro (Mie-ken JPX), Process for producing a
상세보기
Max P. McDaniel ; Anthony P. Eaton ; Elizabeth A. Benham ; Shawn R. Kennedy ; Ashish M. Sukhadia ; Rajendra K. Krishnaswamy ; Kathy S. Collins, Process for producing a polymer composition.
Yang, Qing; McDaniel, Max P.; Martin, Joel L.; Crain, Tony R.; Muninger, Randy S.; Lanier, Jerry T.; Fodor, Jeff S.; Deslauriers, Paul J.; Tso, Chung C.; Rohlfing, David C., Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Process for producing polymers using a composition comprising an organometal compound, a treated solid oxide compound, and an organoaluminum compound.
Martin,Joel L.; Benham,Elizabeth A.; Kertok,Mark E.; Jensen,Michael D.; McDaniel,Max P.; Hawley,Gil R.; Yang,Qing; Thorn,Matthew G.; Sukhadia,Ashish M., Resins that yield low haze films and the process for their production.
Greco, Jeff F; Yang, Qing; Rohatgi, Vivek; Hlavinka, Mark L.; Askew, Jim B, Methods for controlling die swell in dual catalyst olefin polymerization systems.
Hlavinka, Mark L.; Yang, Qing; Inn, Yongwoo; Whitte, William M.; Rathman, John R.; Secora, Steven J.; Hert, Daniel G., Polymers with improved toughness and ESCR for large-part blow molding applications.
Hlavinka, Mark L.; Yang, Qing; Inn, Yongwoo; Whitte, William M.; Rathman, John R.; Secora, Steven J.; Hert, Daniel G., Polymers with improved toughness and ESCR for large-part blow molding applications.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.