[미국특허]
Titanium phosphinimide and titanium iminoimidazolidide catalyst systems with activator-supports
원문보기
IPC분류정보
국가/구분
United States(US) Patent
등록
국제특허분류(IPC7판)
C08F-004/6592
C08F-210/16
C08F-004/659
출원번호
US-0510153
(2014-10-09)
등록번호
US-9441063
(2016-09-13)
발명자
/ 주소
Cruz, Carlos A.
Barr, Jared L.
Praetorius, Jeremy M.
출원인 / 주소
Chevron Phillips Chemical Company LP
대리인 / 주소
Merchant & Gould P.C.
인용정보
피인용 횟수 :
3인용 특허 :
63
초록▼
Catalyst compositions containing activator-supports and half-metallocene titanium phosphinimide complexes or half-metallocene titanium iminoimidazolidide complexes are disclosed. These catalyst compositions can be used to produce olefin polymers having relatively broad molecular weight distributions
Catalyst compositions containing activator-supports and half-metallocene titanium phosphinimide complexes or half-metallocene titanium iminoimidazolidide complexes are disclosed. These catalyst compositions can be used to produce olefin polymers having relatively broad molecular weight distributions and low levels of long chain branching.
대표청구항▼
1. An olefin polymerization process, the process comprising: contacting a catalyst composition with an olefin monomer and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer,wherein the catalyst composition comprises:a half-met
1. An olefin polymerization process, the process comprising: contacting a catalyst composition with an olefin monomer and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer,wherein the catalyst composition comprises:a half-metallocene titanium compound;(ii) an activator-support comprising a solid oxide treated with an electron-withdrawing ion, wherein the solid oxide comprises alumina, silica-alumina, silica-coated alumina, or any combination thereof, and the electron-withdrawing anion comprises sulfate and/or fluoride; and(iii) an optional co-catalyst;wherein the half-metallocene titanium compound has the formula: wherein: Cp is a cyclopentadienyl, indenyl, or fluorenyl group;each X independently is a monoanionic ligand; andL is a phosphinimide ligand; andwherein the olefin polymer has less than or equal to about 0.008 long chain branches (LCB) per 1000 total carbon atoms. 2. The process of claim 1, wherein: the catalyst composition comprises an organoaluminum co-catalyst; andthe activator-support comprises sulfated alumina, fluorided silica-alumina, and/or fluorided silica-coated alumina. 3. The process of claim 1, wherein the polymerization reactor system comprises a slurry reactor, gas-phase reactor, solution reactor, or a combination thereof. 4. The process of claim 1, wherein the olefin monomer comprises ethylene or propylene. 5. The process of claim 1, wherein: the catalyst composition comprises an organoaluminum co-catalyst comprising trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, diisobutylaluminum hydride, diethylaluminum ethoxide, diethylaluminum chloride, or any combination thereof; andthe activator-support comprises sulfated alumina, fluorided silica-alumina, fluorided silica-coated alumina, or any combination thereof. 6. The process of claim 1, wherein: the catalyst composition is contacted with ethylene and an olefin comonomer comprising 1-butene, 1-hexene, 1-octene, or a mixture thereof;the polymerization reactor system comprises a loop slurry reactor; andthe polymerization conditions comprise a polymerization temperature in a range from about 65° C. to about 110° C. 7. The process of claim 1, wherein the olefin polymer is an ethylene polymer characterized by: a ratio of Mw/Mn in a range from about 4 to about 10;a ratio of HLMI/MI in a range from about 15 to about 75; anda density in a range from about 0.90 to about 0.96 g/cm3. 8. The process of claim 1, wherein the half-metallocene titanium compound having formula (I) has the structure of formula (II): wherein: Cp is a cyclopentadienyl, indenyl, or fluorenyl group;each X independently is a monoanionic ligand; andR1, R2, and R3 independently are H or a halide, C1 to C36 hydrocarbyl group, C1 to C36 halogenated hydrocarbyl group, C1 to C36 hydrocarboxy group, or C1 to C36 hydrocarbylsilyl group. 9. The process of claim 8, wherein, in formula (II): Cp is a substituted or unsubstituted cyclopentadienyl or indenyl group;each X independently is a halide or C1 to C18 hydrocarbyl group; andR1, R2, and R3 independently are H or a C1 to C18 hydrocarbyl group. 10. The process of claim 9, wherein R1, R2, and R3 independently are a C1 to C12 alkyl group or C3 to C12 alkenyl group. 11. The process of claim 1, wherein the olefin polymer is an ethylene/α-olefin copolymer characterized by: a ratio of Mw/Mn in a range from about 5 to about 9;a ratio of HLMI/MI in a range from about 25 to about 55;a density in a range from about 0.92 to about 0.95 g/cm3;less than or equal to about 0.003 long chain branches (LCB) per 1000 total carbon atoms; anda number of short chain branches (SCB) per 1000 total carbon atoms that is greater at Mn than at Mz. 12. The process of claim 1, wherein: the olefin polymer has an increase in melt index of at least about 1 g/10 min, based on an increase in hydrogen:monomer weight ratio from 0 to 150 ppmw; andthe olefin polymer has a decrease in density of at least about 0.01 g/cm3, based on an increase in comonomer:monomer molar ratio from 0 to 0.0176:1. 13. The process of claim 1, wherein an organozinc compound is added to the polymerization reactor system, and the addition of the organozinc compound reduces the Mw/Mn of the olefin polymer and/or reduces the z-average molecular weight (Mz) of the olefin polymer. 14. An olefin polymerization process, the process comprising: contacting a catalyst composition with ethylene and an olefin comonomer in a polymerization reactor system under polymerization conditions to produce an ethylene polymer, wherein the catalyst composition comprises:(i) a half-metallocene titanium compound;(ii) an activator-support comprising a solid oxide treated with an electron-withdrawing ion; and(iii) an optional co-catalyst;wherein the half-metallocene titanium compound has the formula: wherein: Cp is a cyclopentadienyl, indenyl, or fluorenyl group;each X independently is a monoanionic ligand; andL is a phosphinimide ligand; and wherein the ethylene polymer is characterized by: a ratio of Mw/Mn in a range from about 4 to about 10;a ratio of HLMI/MI in a range from about 15 to about 75; anda number of short chain branches (SCB) per 1000 total carbon atoms that is greater at Mn than at Mz. 15. The process of claim 14, wherein the half-metallocene titanium compound having formula (I) has the structure of formula (II): wherein: Cp is a cyclopentadienyl, indenyl, or fluorenyl group;each X independently is a monoanionic ligand; andR1 R2, and R3 independently are H or a halide, C1 to C36 hydrocarbyl group, C1 to C36 halogenated hydrocarbyl group, C1 to C36 hydrocarboxy group, or C1 to C36 hydrocarbylsilyl group. 16. The process of claim 15, wherein, in formula (II): Cp is a substituted or unsubstituted cyclopentadienyl or indenyl group;each X independently is a halide or C1 to C18 hydrocarbyl group; andR1, R2, and R3 independently are H or a C1 to C18 hydrocarbyl group. 17. The process of claim 16, wherein R1, R2, and R3 independently are a C1 to C12 alkyl group or C3 to C12 alkenyl group. 18. An olefin polymerization process, the process comprising: contacting a catalyst composition with an olefin monomer and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an olefin polymer, wherein the catalyst composition comprises:(i) a half-metallocene titanium compound;(ii) an activator-support comprising a solid oxide treated with an electron-withdrawing ion; and(iii) an optional co-catalyst;wherein the half-metallocene titanium compound has the formula: wherein: Cp is a cyclopentadienyl, indenyl, or fluorenyl group;each X independently is a monoanionic ligand; andL is a phosphinimide ligand; andwherein the olefin polymer has an increase in melt index of from about 1 g/10 min to about 5 g/10 min, based on an increase in hydrogen:monomer weight ratio from 0 to 150 ppmw. 19. The process of claim 18, wherein the half-metallocene titanium compound having formula (I) has the structure of formula (II): wherein: Cp is a cyclopentadienyl, indenyl, or fluorenyl group;each X independently is a monoanionic ligand; andR1, R2, and R3 independently are a C1 to C12 alkyl group or C3 to C12 alkenyl group. 20. The process of claim 19, wherein the olefin polymer has a decrease in density of at least about 0.01 g/cm3, based on an increase in comonomer:monomer molar ratio from 0 to 0.0176:1. 21. The process of claim 17, wherein the ethylene polymer is an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer. 22. The process of claim 19, wherein the olefin polymer is an ethylene homopolymer, an ethylene/1-butene copolymer, an ethylene/1-hexene copolymer, or an ethylene/1-octene copolymer.
McDaniel, Max P.; Yang, Qing; Crain, Tony R.; Collins, Kathy S., Activator supports impregnated with group VIII transition metals for polymer property control.
Hottovy John D. (Bartlesville OK) Lawrence Frederick C. (Bartlesville OK) Lowe Barry W. (Bartlesville OK) Fangmeier James S. (Bartlesville OK), Apparatus and method for producing ethylene polymer.
McDaniel Max P. ; Benham Elizabeth A. ; Martin Shirley J. ; Collins Kathy S. ; Smith James L. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Compositions that can produce polymers.
McDaniel, Max P.; Benham, Elizabeth A.; Martin, Shirley J.; Collins, Kathy S.; Smith, James L.; Hawley, Gil R.; Wittner, Christopher E.; Jensen, Michael D., Compositions that can produce polymers.
Yang, Qing; Jayaratne, Kumudini C.; Jensen, Michael D.; McDaniel, Max P.; Martin, Joel L.; Thorn, Matthew G.; Lanier, Jerry T.; Crain, Tony R., Dual metallocene catalysts for polymerization of bimodal polymers.
Hottovy John D. ; Hensley Harvey D. ; Przelomski David J. ; Cymbaluk Teddy H. ; Franklin ; III Robert K. ; Perez Ethelwoldo P., High solids slurry polymerization.
Rupert Edward von Haken Spence CA; Stephen John Brown CA; Ryan Paul Wurz CA; Dusan Jeremic CA; Douglas W. Stephan CA, Hydrocarbyl phosphinimine/cyclopentadienyl complexes of group IV metals and preparation thereof.
Jenkins ; III John M. (So. Charleston WV) Jones Russell L. (Chapel Hill NC) Jones Thomas M. (So. Charleston WV) Beret Samil (Danville CA), Method for fluidized bed polymerization.
Shamshoum Edwar S. ; Rauscher David J., Method of olefin polymerization utilizing hydrogen pulsing, products made therefrom, and method of hydrogenation.
Yang, Qing; McDaniel, Max P.; Ding, Errun; Cymbaluk, Ted H.; Crain, Tony R.; Glass, Gary L., Methods for controlling dual catalyst olefin polymerizations with an organozinc compound.
Murray, Rex E.; Jayaratne, Kumudini C.; Yang, Qing; Martin, Joel L.; Glass, Gary L., Nano-linked heteronuclear metallocene catalyst compositions and their polymer products.
McDaniel, Max P.; Johnson, Marvin M.; Randolph, Bruce B.; Collins, Kathy S.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst composition.
Collins, Kathy S.; Palackal, Syriac J.; McDaniel, Max P.; Jensen, Michael D.; Hawley, Gil R.; Farmer, Kenneth R.; Wittner, Christopher E.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L., Organometal catalyst compositions.
Max P. McDaniel ; James B. Kimble ; Kathy S. Collins ; Elizabeth A. Benham ; Michael D. Jensen ; Gil R. Hawley ; Joel L. Martin, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
Max P. McDaniel ; Kathy S. Collins ; James L. Smith ; Elizabeth A. Benham ; Marvin M. Johnson ; Anthony P. Eaton ; Michael D. Jensen ; Joel L. Martin ; Gil R. Hawley, Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R.; Hsieh, Eric T., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Eaton, Anthony P.; Benham, Elizabeth A.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Shveima, Joseph S.; Smith, James L.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions.
McDaniel, Max P.; Collins, Kathy S.; Benham, Elizabeth A.; Eaton, Anthony P.; Jensen, Michael D.; Martin, Joel L.; Hawley, Gil R., Organometal catalyst compositions with solid oxide supports treated with fluorine and boron.
Max P. McDaniel ; Kathy S. Collins ; Anthony P. Eaton ; Elizabeth A. Benham ; Joel L. Martin ; Michael D. Jensen ; Gil R. Hawley, Organometal compound catalyst.
McDaniel, Max P.; Collins, Kathy S.; Hawley, Gil R.; Jensen, Michael D.; Benham, Elizabeth A.; Eaton, Anthony P.; Martin, Joel L.; Wittner, Christopher E., Organometal compound catalyst.
Hawley, Gil R.; McDaniel, Max P.; Wittner, Christopher E.; Jensen, Michael D.; Martin, Joel L.; Benham, Elizabeth A.; Eaton, Anthony P.; Collins, Kathy S., Polymerization catalysts.
Martin,Joel L.; Thorn,Matthew G.; McDaniel,Max P.; Jensen,Michael D.; Yang,Qing; DesLauriers,Paul J.; Kertok,Mark E., Polymerization catalysts and process for producing bimodal polymers in a single reactor.
Yang,Qing; Jensen,Michael D.; Thorn,Matthew G.; McDaniel,Max P.; Martin,Joel L.; Crain,Tony R., Polymerization catalysts for producing high melt index polymers without the use of hydrogen.
Yang, Qing; Jensen, Michael D.; Martin, Joel L.; Thorn, Matthew G.; McDaniel, Max P.; Yu, Youlu; Rohlfing, David C., Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching.
Hanson Donald O. (Bartlesville OK), Process and apparatus for separating diluents from solid polymers utilizing a two-stage flash and a cyclone separator.
Hasegawa Saiki (Mie-ken JPX) Yasuda Hisami (Mie-ken JPX) Yano Akihiro (Mie-ken JPX), Process for producing a
상세보기
Max P. McDaniel ; Anthony P. Eaton ; Elizabeth A. Benham ; Shawn R. Kennedy ; Ashish M. Sukhadia ; Rajendra K. Krishnaswamy ; Kathy S. Collins, Process for producing a polymer composition.
Yang, Qing; McDaniel, Max P.; Martin, Joel L.; Crain, Tony R.; Muninger, Randy S.; Lanier, Jerry T.; Fodor, Jeff S.; Deslauriers, Paul J.; Tso, Chung C.; Rohlfing, David C., Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches.
McDaniel Max P. ; Collins Kathy S. ; Johnson Marvin M. ; Smith James L. ; Benham Elizabeth A. ; Hawley Gil R. ; Wittner Christopher E. ; Jensen Michael D., Process for producing polymers using a composition comprising an organometal compound, a treated solid oxide compound, and an organoaluminum compound.
Martin,Joel L.; Benham,Elizabeth A.; Kertok,Mark E.; Jensen,Michael D.; McDaniel,Max P.; Hawley,Gil R.; Yang,Qing; Thorn,Matthew G.; Sukhadia,Ashish M., Resins that yield low haze films and the process for their production.
Hlavinka, Mark L.; Ding, Errun; DesLauriers, Paul; Inn, Yongwoo; Cui, Lili; Yang, Qing; Sukhadia, Ashish M.; St. Jean, Guylaine; Buck, Richard M., Higher density polyolefins with improved stress crack resistance.
Cruz, Carlos A.; Barr, Jared L.; Praetorius, Jeremy M., Titanium phosphinimide and titanium iminoimidazolidide catalyst systems with activator-supports.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.